The use of enzymes in food applications has been around for centuries. 1 Some of the first examples were the use of naturally occurring enzymes in the source substrate, such as α-amylases that are naturally present in grains used for brewing. Enzymes were also extracted from both plant and animal sources. Then came the use of microbially produced enzymes, where the enzymes were the natural products of the microbial culture. Today, most enzymes are still produced microbially; however, many of the enzymes are no longer native enzymes, but engineered versions. Protein engineering allows the properties of the enzyme to be optimized for its specific use. Many of the applications today are only possible by the use of these specialized products.Protein engineering is practised through the use of recombinant DNA (rDNA) technology. The same rDNA technology is also utilized to design the microbial strains used to produce the enzyme. The hosts used for enzyme manufacture are becoming more limited in number. At the same time, the source of the enzyme is coming from a wider variety of organisms. This creates a host-platform-centred approach that offers numerous advantages. Efforts can be focused on developing the molecular biology tools required for the smaller set of host organisms. More in-depth knowledge can be gathered and applied to improve these strains by conferring the properties important for industrial enzyme manufacture. These include factors such as fast and efficient growth on simple media, high extracellular enzyme expression and low level of other background proteins, among others. These advantages go beyond those just for strain development, but also for the fermentation, recovery and formulation process. Developing numerous processes for different enzymes is simplified when the same host strain is used, as knowledge of the strain is leverageable. Specifically, the requirements for growing and recovering from the same strain remain the same and this provides a basis to develop a process unique to each enzyme. Requirements for growing the strain remain the same and process conditions become more similar. This advantage continues through to the industrial production plant, where similar processes can reduce capital equipment requirements and ease plant operations. APPLICATIONS RESEARCH AND PROTEIN ENGINEERINGAlthough this topic will be covered in more detail in another chapter, we will nonetheless introduce the subject here. Modern industrial biotechnology is highly integrated and not just Enz y mes in Food Technology , Second edition Edited by Robert J. Whitehurst and Maarten van Oort
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.