Malaria, sleeping sickness, Chagas' disease, Aleppo boil, and AIDS are among the tropical diseases causing millions of infections and cases of deaths per year because only inefficient chemotherapy is available. Since the targeting of the enzymes of the polyamine pathway may provide novel therapy options, we aimed to inhibit the deoxyhypusine hydroxylase, which is an important step in the biosynthesis of the eukaryotic initiation factor 5A. In order to identify new lead compounds, piperidines were produced and biologically evaluated. The 3,5-diethyl piperidone-3,5-dicarboxylates 11 and 13 substituted with 4-nitrophenyl rings in the 2 and 6 positions were found to be active against Trypanosoma brucei brucei and Plasmodium falciparum combined with low cytotoxicity against macrophages. The corresponding monocarboxylates are only highly active against the T. brucei brucei. The piperidine oximether 53 demonstrated the highest plasmodicidal activity. Moreover, compounds 11 and 53 were also able to inhibit replication of HIV-1.
The increasing drug resistance of malaria parasites against chemotherapeutics enforces new strategies in finding new drugs. Here, we describe a new class of compounds the piperidone 3-carboxylates which show an antiplasmodial effect in vitro and in vivo. This effect might be caused by inhibition of eukaryotic initiation factor (eIF-5A).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.