Intertidal coastal sediments are important centers for nutrient transformation, regeneration, and storage. Sediment resuspension, due to wave action or tidal currents, can induce nutrient release to the water column and fuel primary production. Storms and extreme weather events are expected to increase due to climate change in coastal areas, but little is known about their effect on nutrient release from coastal sediments. We have conducted in-situ sediment resuspension experiments, in which erosion was simulated by a stepwise increase in current velocities, while measuring nutrient uptake or release in field flumes positioned on intertidal areas of a tidal bay (Eastern Scheldt) and an estuary (Western Scheldt). In both systems, the water column concentration of ammonium (NH4+) and nitrite (NO2−) increased predictably with greater erosion as estimated from pore water dilution and erosion depth. In contrast, the phosphate (PO43−) dynamics were different between systems, and those of nitrate (NO3−) were small and variable. Notably, sediment resuspension caused a decrease in the overlying water PO43− concentration in the tidal bay, while an increase was observed in the estuarine sediments. Our observations showed that the concentration of PO43− in the water column was more intensely affected by resuspension than that of NH4+ and NO2−. The present study highlights the differential effect of sediment resuspension on nutrient exchange in two contrasting tidal coastal environments.
Wageningen Marine Research aanvaardt geen aansprakelijkheid voor gevolgschade, noch voor schade welke voortvloeit uit toepassingen van de resultaten van werkzaamheden of andere gegevens verkregen van Wageningen Marine Research. Opdrachtgever vrijwaart Wageningen Marine Research van aanspraken van derden in verband met deze toepassing. Alle rechten voorbehouden. Niets uit deze uitgave mag weergegeven en/of gepubliceerd worden, gefotokopieerd of op enige andere manier gebruikt worden zonder schriftelijke toestemming van de uitgever of auteur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.