Background
Patients with COVID-19 seem to be prone to the development of arrhythmias. The objective of this trial was to determine the characteristics, clinical significance and therapeutic consequences of these arrhythmias in COVID-19 patients requiring intensive care unit (ICU) treatment.
Methods and results
A total of 113 consecutive patients (mean age 64.1 ± 14.3 years, 30 (26.5%) female) with positive PCR testing for SARS-CoV2 as well as radiographically confirmed pulmonary involvement admitted to the ICU from March to May 2020 were included and observed for a cumulative time of 2321 days. Fifty episodes of sustained atrial tachycardias, five episodes of sustained ventricular arrhythmias and thirty bradycardic events were documented.
Sustained new onset atrial arrhythmias were associated with hemodynamic deterioration in 13 cases (35.1%). Patients with new onset atrial arrhythmias were older, showed higher levels of Hs-Troponin and NT-proBNP, and a more severe course of disease.
The 5 ventricular arrhythmias (two ventricular tachycardias, two episodes of ventricular fibrillation, and one torsade de pointes tachycardia) were observed in 4 patients. All episodes could be terminated by immediate defibrillation/cardioversion. Five bradycardic events were associated with hemodynamic deterioration. Precipitating factors could be identified in 19 of 30 episodes (63.3%), no patient required cardiac pacing. Baseline characteristics were not significantly different between patients with or without bradycardic events.
Conclusion
Relevant arrhythmias are common in severely ill ICU patients with COVID-19. They are associated with worse courses of disease and require specific treatment. This makes daily close monitoring of telemetric data mandatory in this patient group.
In this article, we describe an optimized, Langendorff-based procedure for the isolation of single-cell atrial cardiomyocytes (ACMs) from a rat model of metabolic syndrome (MetS)-related heart failure with preserved ejection fraction (HFpEF). The prevalence of MetS-related HFpEF is rising, and atrial cardiomyopathies associated with atrial remodeling and atrial fibrillation are clinically highly relevant as atrial remodeling is an independent predictor of mortality. Studies with isolated single-cell cardiomyocytes are frequently used to corroborate and complement in vivo findings. Circulatory vessel rarefication and interstitial tissue fibrosis pose a potentially limiting factor for the successful single-cell isolation of ACMs from animal models of this disease. We have addressed this issue by employing a device capable of manually regulating the intraluminal pressure of cardiac cavities during the isolation procedure, substantially increasing the yield of morphologically and functionally intact ACMs. The acquired cells can be used in a variety of different experiments, such as cell culture and functional Calcium imaging (i.e., excitation-contraction-coupling). We provide the researcher with a step-by-step protocol, a list of optimized solutions, thorough instructions to prepare the necessary equipment, and a comprehensive troubleshooting guide. While the initial implementation of the procedure might be rather difficult, a successful adaptation will allow the reader to perform state-of-the-art ACM isolations in a rat model of MetS-related HFpEF for a broad spectrum of experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.