Dedicated to the memory of Wittko Francke.The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti-aphrodisiac pheromone and additionally contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatography/ mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatography/infrared spectroscopy (GC/IR)-analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3-oxohexan-1-ol and (Z)-3-hexen-1-ol with (S)-2,3-dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcohols. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a speciesspecific manner for semiochemical formation.
Floral scents are important pollinator attractants, but there is limited knowledge about the importance of single components in plant-pollinator interactions. This especially is true in crop pollination systems. The aim of this study is to identify floral volatiles of several European pear cultivars (Pyrus communis L.), and to determine their potential in eliciting physiological responses in antennae of honey bees (Apis mellifera L.), the most important pollinators of pear. Volatiles were collected by dynamic headspace and analysed by (high resolution) gas chromatography coupled to mass spectrometry (GC/MS) and nuclear magnetic resonance spectroscopy. Antennal responses were investigated by GC coupled to electroantennographic detection (GC/EAD). We trapped in the mean 256 ng of scent per flower and hour (flower −1 h −1) from the different cultivars with either linalool + methyl benzoate or methyl 2-hydroxy-3-methylpentanoate as most abundant compounds. Of the 108 detected pear floral scent components, 17 were electrophysiologically active in honey bee antennae. Among these compounds were (E)-N-(2-methylbutyl)-and (E)-N-(3-methylbutyl)-1-(pyridin-3-yl)methanimine, which were not known from nature before to the best of our knowledge. Most other compounds identified as flower scent in pear are widespread compounds, known from flowers of various other species. Our results provide new insights in the floral volatile chemistry of an important insect-pollinated crop and show for the first time that honey bees have the olfactory ability to detect several pear floral volatiles. These data are an important basis for more detailed studies of the olfactory communication between honey bees and European pear flowers and might in the long term be used to manipulate the attractiveness of pear to obtain optimal fruit set.
Bacteria can produce a wide variety of volatile compounds. Many of these volatiles carry oxygen, while nitrogen-containing volatiles are less frequently observed. We report here on the identification and synthesis of new nitrogen-containing volatiles from Salinispora pacifica CNS863 and explore the occurrence in another bacterial lineage, exemplified by Roseobacter-group bacteria. Several compound classes not reported before from bacteria were identified, such as dialkyl ureas and oxalamides. Sulfinamides have not been reported before as natural products. The actinomycete S. pacifica CNS863 produces, for example, sulfinamides N-isobutyl- and N-isopentylmethanesulfinamide (5, 6), urea N,N'-diisobutylurea (16), and oxalamide N,N'-diisobutyloxalamide (17). In addition, new imines such as (E)-1-(furan-2-yl)-N-(2-methylbutyl)methanimine (8) and (E)-2-((isobutylimino)methyl)phenol (13) were identified together with several other imines, acetamides, and formamides. Some of these compounds including the sulfinamides were also released by the Roseobacter-group bacteria Roseovarius pelophilus G5II, Pseudoruegeria sp. SK021, and Phaeobacter gallaeciensis BS107, although generally fewer compounds were detected. These nitrogen-containing volatiles seem to originate from biogenic amines derived from the amino acids valine, leucine, and isoleucine.
Five new members of the salinilactone family, salinilactones D–H, are reported. These bicyclic lactones are produced by Salinispora bacteria and display extended or shortened alkyl side chains relative to the recently reported salinilactones A–C. They were identified by GC/MS, gas chromatographic retention index, and comparison with synthetic samples. We further investigated the occurrence of salinilactones across six newly proposed Salinispora species to gain insight into how compound production varies among taxa. The growth‐inhibiting effect of this compound family on multiple biological systems including non‐Salinispora actinomycetes was analyzed. Additionally, we found strong evidence for significant cytotoxicity of the title compounds.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.