In Switzerland, only cannabis with a total Δ 9 -tetrahydrocannabinol (THC) content higher than 1% is controlled by the narcotics legislation. Cannabis products rich in cannabidiol (CBD) and low in THC can be legally sold as tobacco substitutes. In this paper, we address analytical and forensic toxicological issues related to the increasing availability and consumption of these products. Based on the analysis of 531 confiscated cannabis samples, we could establish classification thresholds: plant material with a ratio of total THC/total CBD ≥ 3 is graded as THC-rich/CBD-poor, whereas samples with a ratio ≤ 0.33 are categorized as CBD-rich/ THC-poor cannabis. We also evaluated an on-site test kit as a rapid alternative to the laborious liquid or gas chromatography (LC or GC)-based techniques normally used for the differentiation between THC-and CBD-cannabis. Furthermore, we determined whole blood and urine cannabinoid levels after smoking different doses of legal CBD-cannabis. A male volunteer smoked one cigarette within 15 min and four cigarettes within 1 h and within 30 min, respectively. Cigarettes contained on average 42.7 mg CBD and 2.2 mg THC. Blood samples were collected up to 1.1 h and urine samples up to 27.3 h after the beginning of smoking. All urine samples tested negative by three immunochemical assays for detection of cannabis use. This is an important finding for abstinence monitoring. However, we found that the trace amounts of THC present in CBD-cannabis can produce THC blood levels above the Swiss legal limit for driving, and thus render the consumer unable to drive from a legal point of view.
To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ 9 -tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants. Participants smoked a joint containing 500 mg of tobacco and either 500 mg of CBD-rich marijuana (16.6% total CBD; 0.9% total THC) or 500 mg of a placebo substance, then performed three different dimensions of the Vienna Test System TRAFFIC examining reaction time, behaviour under stress, and concentration performance. For further assessment of participants' fitness to drive, three tests of balance and coordination were evaluated and vital signs (blood pressure and pulse) were measured. Dried blood spot samples of capillary blood were taken after smoking and after completion of the tests to determine the cannabinoid concentrations (CBD, THC and THC-metabolites). The results revealed no significant differences between the effects of smoking CBD-rich marijuana and placebo on reaction time, motor time, behaviour under stress, or concentration performance. Maximum free CBD and THC concentrations in capillary blood were detected shortly after smoking, ranging between 2.6-440.0 ng/mL and 6.7-102.0 ng/mL, respectively. After 45 min, capillary blood concentrations had already declined and were in the range of 1.9-135.0 ng/mL (free CBD) and 0.9-38.0 ng/mL (free THC). Although the observed levels of free THC concentrations have been reported to cause symptoms of impairment in previous studies in which THC-rich marijuana was smoked, no signs of impairment were found in the current study. This finding suggests that higher CBD concentrations cause a negative allosteric effect in the endocannabinoid system, preventing the formation of such symptoms. Nevertheless, it is recommended that consumers refrain from driving for several hours after smoking CBD-rich marijuana, as legal THC concentration limits may be exceeded. KEY POINTS• No significant impact on driving ability was found after smoking CBD-rich marijuana.• No effects on vital signs were observed after smoking CBD-rich marijuana.• All participants exceeded the Driving Under the Influence of Drugs (DUID) legal limit for THC in blood after smoking CBD-rich marijuana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.