The upper Beetaloo Sub-basin of the McArthur Basin, Northern Territory, Australia, records over 500 myr of tectonic history of the North Australian Craton from
c.
1.45 to 0.9 Ga. The basin sequences include shallow-water clastic sedimentary rocks that preserve the oldest global commercial hydrocarbon reserves. New detrital zircon U–Pb age and Lu–Hf isotopes, compiled with published data, provide constraints on the basin provenance and reveal the dynamic tectonic evolution of Mesoproterozoic northern Australia. Data from the oldest formation examined, the
c.
1.4 Ga Bessie Creek Sandstone, suggest provenance from (present-day) eastern sources (e.g. the Mount Isa Province and the palinspastically adjacent Curnamona and Georgetown provinces) with considerable spatial heterogeneity. These eastern source regions are interpreted as uplifted rift-shoulder highs, formed by contemporaneous extension between Proterozoic Australia and Laurentia. Progressively younger formations (the Velkerri Formation, the Moroak Sandstone and the Kyalla Formation) demonstrate a rapid swamping of the basin by detritus from southerly sources (e.g. the Arunta Region) that occurred at
c.
1.4–1.3 Ga. This is particularly characterized by the up-section reduction of
c.
1.6–1.5 Ga detrital zircon grains. This change in provenance is interpreted to relate to closure of an ocean basin during the period 1.35–1.25 Ga, which resulted in uplift of the southern margin of the North Australia Craton. Three ungrouped latest Mesoproterozoic to Neoproterozoic sedimentary units, the lower and upper Jamison sandstone and the Hayfield mudstone, were deposited after the emplacement of the Warakurna Large Igneous Province and are sourced from the Musgrave Province. Detrital zircon U–Pb and Hf isotope affinities between the lower and upper Jamison sandstone and the Hayfield mudstone and the latest Mesoproterozoic to early Neoproterozoic successions along the eastern margin of the North China Craton suggest that they share a similar provenance. This supports correlations between the Mesoproterozoic of the North China Yanshan Basin and the greater McArthur Basin.
Supplementary material:
Sample descriptions, details of data and concordia plots are available at
https://doi.org/10.6084/m9.figshare.c.4444790
The c. 1.5–1.3 Ga Wilton package, the upper succession of the greater McArthur Basin, preserves detailed tectono-sedimentary evidence for the Mesoproterozoic evolution of the North Australian Craton (NAC). In addition, it is a valuable global sedimentary repository for the poorly explored Mesoproterozoic. New detrital zircon U–Pb age and Lu–Hf isotope data, collected from multiple, geographically separated, basins that make up the Wilton package, are compiled with previously published data to illuminate the basin evolution. The spatial and temporal variation in sedimentary provenance illustrates two major geographic changes that correspond to continent-scale tectonic convulsions of the NAC during the Mesoproterozoic. The first is shown by the influx of sediment sourced from east and southeast terranes. This is linked to rifting between Proterozoic Australia and Laurentia at c. 1.45 Ga, resulting in the uplift of the eastern margin of the NAC–SAC (South Australian Craton). The second basin geographic change is illustrated by a flux of southerly-sourced detritus that is interpreted to be tectonically driven by the uplift of the southern NAC, during the subduction/closure of the Mirning Ocean at c. 1.32 Ga. Spatially, sediment in the Wilton package is separated into two depositional systems: sedimentary rocks within the Birrindudu Basin, the western component of the Wilton package, have different detrital signatures relative to other Wilton package successions found east of the Daly Waters Fault Zone, in the Beetaloo Sub-basin, the McArthur Basin and the South Nicholson Basin. The Daly Waters Fault Zone is interpreted as an ancient bathymetric high, blocking sediment transport. Although they differ in sources, rocks in both the Birrindudu Basin and the eastern Wilton package record coeval shifts of basin provenance to southern sources. The coherent evolution of basin provenance indicates a consistent tectono-sedimentation history, and links the Birrindudu Basin and the other Wilton successions in a tectonic framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.