For achieving high material removal rates while grinding free formed surfaces, shape grinding with toroid grinding wheels is favored. The material removal is carried out line by line. The contact area between grinding wheel and workpiece is therefore complex and varying. Without detailed knowledge about the contact area, which is influenced by many factors, the shape grinding process can only be performed sub-optimally. To improve this flexible production process and in order to ensure a suitable process strategy a simulation-tool is being developed. The simulation comprises a geometric-kinematic process simulation and a finite elements simulation. This paper presents basic parts of the investigation, modelling and simulation of the NC-shape grinding process with toroid grinding wheels.
SSCI-VIDE+ECI2D+TJA:DGU:ELE:MLA:CGE:MTFInternational audienceThe kinetics of atmospheric petroleum residue hydroconversion with a dispersed catalyst was studied. A methodology has been developed in order to transpose the chemical kinetics (reaction network, stoichiometry, and kinetic constants) obtained with a batch reactor by Nguyen et al. to a continuous reactor [Nguyen, T. S.; Tayakout-Fayolle, M.; Ropars, M.; Geantet, C. Chem. Eng. Sci. 2013, 94, 214]. Their five-lump kinetic model takes into account vaporliquid mass transfer, vaporliquid equilibriums, and hydrogen consumption. Consequently, hydrodynamics and vaporliquid mass transfer of the micropilot unit's reactor were studied in a cold mock-up by tracer experiments. The same thermodynamic model given by Nguyen et al. was used, and the flash calculations were performed using ProSimPlus software. Experimental data were obtained in the micropilot unit at 420, 430, and 440 degrees C with a dispersed catalyst for residence times of 1 and 2 h. The catalyst precursor, an oil-soluble molybdenum naphthenate, was added to obtain a molybdenum concentration of 600 wt ppm in the feedstock. The total pressure was 12 MPa with a hydrogen-to-feed ratio of 500 N m(3)/m(3). The methodology was validated by comparing the model's output with the experimental results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.