Ricin toxin A-chain (RTA) is the catalytic subunit of ricin, a heterodimeric toxin from castor beans. Its ribosomal inactivating activity arises from depurination of a single adenine from position A(4324) in a GAGA tetraloop from 28S ribosomal RNA. Minimal substrate requirements are the GAGA tetraloop and stem of two or more base pairs. Depurination activity also occurs on stem-loop DNA with the same sequence, but with the k(cat) reduced 200-fold. Systematic variation of RNA 5'-G(1)C(2)G(3)C(4)[G(5)A(6)G(7)A(8)]G(9)C(10)G(11)C(12)-3' 12mers via replacement of each nucleotide in the tetraloop with a deoxynucleotide showed a 16-fold increase in k(cat) for A(6) --> dA(6) but reduced k(cat) up to 300-fold for the other sites. Methylation of individual 2'-hydroxyls in a similar experiment reduced k(cat) by as much as 3 x 10(-3)-fold. In stem-loop DNA, replacement of d[G(5)A(6)G(7)A(8)] with individual ribonucleotides resulted in small kinetic changes, except for the dA(6) --> A(6) replacement for which k(cat) decreased 6-fold. Insertion of d[G(5)A(6)G(7)A(8)] into an RNA stem-loop or G(5)A(6)G(7)A(8) into a DNA stem-loop reduced k(cat) by 30- and 5-fold, respectively. Multiple substitutions of deoxyribonucleotides into RNA stem-loops in one case (dG(5),dG(7)) decreased k(cat)/K(m) by 10(5)-fold, while a second change (dG(5),dA(8)) decreased k(cat) by 100-fold. Mapping these interactions on the structure of GAGA stem-loop RNA suggests that all the loop 2'-hydroxyl groups play a significant role in the action of ricin A-chain. Improved binding of RNA-DNA stem-loop hybrids provides a scaffold for inhibitor design. Replacing the adenosine of the RTA depurination site with deoxyadenosine in a small RNA stem-loop increased k(cat) 20-fold to 1660 min(-1), a value similar to RTA's k(cat) on intact ribosomes.
Ricin toxin A-chain (RTA) depurinates a single adenylate on a GAGA stem-loop region of eukaryotic 28S RNA, making it a potent toxin. Steady state rate analysis is used to establish the kinetic parameters for depurination of short RNA, DNA, and RNA-DNA hybrids of GAGA linear segments and stem-loop regions as substrates for RTA. Both stem and tetraloop structures are essential for action on RNA. For DNA stem-loop substrates, stem stability plays a small role in enhancing catalytic turnover but can enhance binding by up to 3 orders of magnitude. DNA sequences of d[GAGA] without stem-loop structures are found to be slow substrates for RTA. In contrast, equivalent RNA sequences exhibit no activity with RTA. Introduction of a deoxyadenosine at the depurination site of short RNA oligonucleotides restores catalytic function. NMR analysis indicates that the short, nonsubstrate GAGA is converted to substrate in GdAGA by the presence of a more flexible ribosyl group at the deoxyadenosine site. Conversion between C2'-endo and C2'-exo conformations at the deoxyadenosine site moves the 3'- and 5'-phosphorus atoms by 1.1 A, and the former is proposed to place them in a catalytically favorable configuration. The ability to use short RNA-DNA hybrids as substrates for RTA permits exploration of related structures to function as substrates and inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.