Tumor suppressor SMARCA4 (BRG1), a key SWI/SNF chromatin remodeling gene, is frequently inactivated in cancers and is not directly druggable. We recently uncovered that SMARCA4 loss in an ovarian cancer subtype causes cyclin D1 deficiency leading to susceptibility to CDK4/6 inhibition. Here, we show that this vulnerability is conserved in non-small cell lung cancer (NSCLC), where SMARCA4 loss also results in reduced cyclin D1 expression and selective sensitivity to CDK4/6 inhibitors. In addition, SMARCA2, another SWI/SNF subunit lost in a subset of NSCLCs, also regulates cyclin D1 and drug response when SMARCA4 is absent. Mechanistically, SMARCA4/2 loss reduces cyclin D1 expression by a combination of restricting CCND1 chromatin accessibility and suppressing c-Jun, a transcription activator of CCND1. Furthermore, SMARCA4 loss is synthetic lethal with CDK4/6 inhibition both in vitro and in vivo, suggesting that FDA-approved CDK4/6 inhibitors could be effective to treat this significant subgroup of NSCLCs.
The PD-L1 (CD274) immune-checkpoint ligand is often upregulated in cancers to inhibit T cells and elicit immunosuppression. Independent of this activity, PD-L1 has recently been shown to also exert a cancer cell-intrinsic function promoting tumorigenesis. Here, we establish this tumor-intrinsic role of PD-L1 in triple-negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC). Using FACS-assisted shRNA screens, we identified the cell-surface adhesion receptor CD44 as a key positive regulator of PD-L1 expression in these cancers. Mechanistically, CD44 activated PD-L1 transcription in part through its cleaved intracytoplasmic domain (ICD), which bound to a regulatory region of the PD-L1 locus containing a consensus CD44-ICD binding site. Supporting this genetic interaction, CD44 positively correlated with PD-L1 expression at the mRNA and protein levels in primary tumor samples of TNBC and NSCLC patients. These data provide a novel basis for CD44 as a critical therapeutic target to suppress PD-L1 tumor-intrinsic function.Significance: CD44 is a potential target to suppress PD-L1 function in TNBC. This finding has the potential to open a new area of therapy for TNBC.
Inactivating mutations in SMARCA4 (BRG1), a key SWI/SNF chromatin remodelling gene, underlie small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). To reveal its druggable vulnerabilities, we perform kinase-focused RNAi screens and uncover that SMARCA4-deficient SCCOHT cells are highly sensitive to the inhibition of cyclin-dependent kinase 4/6 (CDK4/6). SMARCA4 loss causes profound downregulation of cyclin D1, which limits CDK4/6 kinase activity in SCCOHT cells and leads to in vitro and in vivo susceptibility to CDK4/6 inhibitors. SCCOHT patient tumors are deficient in cyclin D1 yet retain the retinoblastoma-proficient/p16INK4a-deficient profile associated with positive responses to CDK4/6 inhibitors. Thus, our findings indicate that CDK4/6 inhibitors, approved for a breast cancer subtype addicted to CDK4/6 activation, could be repurposed to treat SCCOHT. Moreover, our study suggests a novel paradigm whereby critically low oncogene levels, caused by loss of a driver tumor suppressor, may also be exploited therapeutically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.