Clean, sustainable energy systems are a preeminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues pose one of the key challenges associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating, or propulsion applications. This comprehensive textbook is unique in that it is the first systematic treatment of this subject. This text places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics, and acoustic disciplines, synthesizing these fields into a systematic presentation of the intrinsically unsteady processes in combustors.
This paper addresses the impact of fuel composition on the operability of lean premixed gas turbine combustors. This is an issue of current importance due to variability in the composition of natural gas fuel supplies and interest in the use of syngas fuels. This paper reviews available results and current understanding of the effects of fuel composition on combustor blowout, flashback, dynamic stability, and autoignition. It summarizes the underlying processes that must be considered when evaluating how a given combustor’s operability will be affected as fuel composition is varied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.