BackgroundIn response to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the impact of coronavirus disease 2019 , governments have implemented a variety of measures to control the spread of the virus and the associated disease. Among these, have been measures to control the pandemic in primary and secondary school settings. ObjectivesTo assess the e ectiveness of measures implemented in the school setting to safely reopen schools, or keep schools open, or both, during the COVID-19 pandemic, with particular focus on the di erent types of measures implemented in school settings and the outcomes used to measure their impacts on transmission-related outcomes, healthcare utilisation outcomes, other health outcomes as well as societal, economic, and ecological outcomes. Search methodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and the Educational Resources Information Center, as well as COVID-19-specific databases, including the Cochrane COVID-19 Study Register and the WHO COVID-19 Global literature on coronavirus disease (indexing preprints) on 9 December 2020. We conducted backward-citation searches with existing reviews. Selection criteriaWe considered experimental (i.e. randomised controlled trials; RCTs), quasi-experimental, observational and modelling studies assessing the e ects of measures implemented in the school setting to safely reopen schools, or keep schools open, or both, during the COVID-19 pandemic. Outcome categories were (i) transmission-related outcomes (e.g. number or proportion of cases); (ii) healthcare utilisation outcomes (e.g. number or proportion of hospitalisations); (iii) other health outcomes (e.g. physical, social and mental health); and (iv) societal, economic and ecological outcomes (e.g. costs, human resources and education). We considered studies that included any Measures implemented in the school setting to contain the COVID-19 pandemic (Review)
Background Surveillance testing within healthcare facilities provides an opportunity to prevent severe outbreaks of coronavirus disease 2019 (COVID-19). However, the quantitative impact of different available surveillance strategies and their potential to decrease the frequency of outbreaks are not well-understood. Methods We establish an individual-based model representative of a mental health hospital yielding generalizable results. Attributes and features of this facility were derived from a prototypical hospital, which provides psychiatric, psychosomatic and psychotherapeutic treatment. We estimate the relative reduction of outbreak probability for three test strategies (entry test, once-weekly test and twice-weekly test) relative to a symptom-based baseline strategy. Based on our findings, we propose determinants of successful surveillance measures. Results Entry Testing reduced the outbreak probability by 26%, additionally testing once or twice weekly reduced the outbreak probability by 49% or 67% respectively. We found that fast diagnostic test results and adequate compliance of the clinic population are mandatory for conducting effective surveillance. The robustness of these results towards uncertainties is demonstrated via comprehensive sensitivity analyses. Conclusions We conclude that active testing in mental health hospitals and similar facilities considerably reduces the number of COVID-19 outbreaks compared to symptom-based surveillance only.
Dynamic behavior of biological systems is commonly represented by non-linear models such as ordinary differential equations. A frequently encountered task in such systems is the estimation of model parameters based on measurement of biochemical compounds. Non-linear models require special techniques to estimate the uncertainty of the obtained model parameters and predictions, e.g. by exploiting the concept of the profile likelihood. Model parameters with significant uncertainty associated with their estimates hinder the interpretation of model results. Informing these model parameters by optimal experimental design minimizes the additional amount of data and therefore resources required in experiments. However, existing techniques of experimental design either require prior parameter distributions in Bayesian approaches or do not adequately deal with the non-linearity of the system in frequentist approaches. For identification of optimal experimental designs, we propose a two-dimensional profile likelihood approach, providing a design criterion which meaningfully represents the expected parameter uncertainty after measuring data for a specified experimental condition. The described approach is implemented into the open source toolbox Data2Dynamics in Matlab. The applicability of the method is demonstrated on an established systems biology model. For this demonstration, available data has been censored to simulate a setting in which parameters are not yet well determined. After determining the optimal experimental condition from the censored ones, a realistic evaluation was possible by re-introducing the censored data point corresponding to the optimal experimental condition. This provided a validation that our method is feasible in real-world applications. The approach applies to, but is not limited to, models in systems biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.