Well-dated lacustrine records are essential to establish the timing and drivers of regional hydroclimate change. Searles Basin, California records the depositional history of a fluctuating saline-alkaline lake in the terminal basin of the Owens River system draining the eastern Sierra Nevada. Here we establish a U-Th chronology for the ˜76-m-long SLAPP-SLRS17 core collected in 2017 based on dating of evaporite minerals. 98 dated samples comprising 9 different minerals were evaluated based on stratigraphic, mineralogic, textural, chemical and reproducibility criteria. After application of these criteria, a total of 37 dated samples remained as constraints for the age model. A lack of dateable minerals between 145-110 ka left the age model unconstrained over the penultimate glacial termination (Termination II). We thus established a tie point between plant wax δD values in the core and a nearby speleothem δ18O record at the beginning of the Last Interglacial. We construct a Bayesian age model allowing stratigraphy to inform sedimentation rate inflections. We find the >210 ka SLAPP-SRLS17 record contains five major units that correspond with prior work. The new dating is broadly consistent with previous efforts but provides more precise age estimates and a detailed evaluation of evaporite depositional history. We also offer a substantial revision of the age of the Bottom Mud-Mixed Layer contact, shifting it from ˜130 ka to 178±3 ka. The new U-Th chronology documents the timing of mud and salt layers and lays the foundation for climate reconstructions.
Mineralogy, petrographic textures, and sedimentary structures from the world’s largest trona deposit, the Wilkins Peak Member (WPM) of the early Eocene Green River Formation (GRF), Bridger subbasin, Wyoming, provide key data about depositional conditions and paleoenvironments. The 250 m-long WPM interval in the Solvay S-34-1 drill core analyzed in this study contains a detailed record of sedimentation in the Bridger subbasin at the deepest area of a hydrologically-closed basin during peak Cenozoic atmospheric CO2 concentrations. Large accumulations of trona (Na3(HCO3)(CO3)·2H2O), shortite (Na2Ca2(CO3)3), northupite (Na3Mg (CO3)2Cl), and halite (NaCl; now replaced by trona), occur in the lower half of the WPM. Modern saline lake environments such as Lake Magadi, Kenya, and the Dead Sea, Israel-Jordan, are useful analogues for interpreting paleolake conditions associated with evaporite deposition in the Solvay S-34-1 core. Solvay saline lake deposits are organized into meter-scale shallowing-upward successions, beginning with (1) oil shale overlain by (2) trona, in places interbedded with oil shale, followed by (3) peloidal dolomite grainstone and/or silty dolomitic mudstone, and (4) massive mudstone with disruption features or desiccation cracks, and/or siliciclastic sandstone with ripple cross-stratification. Based on observations of modern hypersaline lake environments, WPM evaporite deposition at the basin depocenter is interpreted to be controlled by inflow water composition and volume, evaporative concentration, and seasonally-driven lake temperature fluctuations, resulting in recurrent patterns in evaporite mineralogies and textures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.