Migration is an important component of some species full annual cycle. California’s Central Valley and the Colorado River Delta provide important riparian and wetland habitats for migrating waterbirds in the arid west of North America, but little is known about whether these locations are important at the population level to migrating landbirds. We used eBird Status and Trends abundance data to quantify the importance of the Central Valley and Colorado River Delta to landbirds by estimating the proportion of the breeding population of 112 species that use each site during migration. We found that ~17 million landbirds use the Colorado River Delta in the spring and ~14 million in the fall. Across 4 study regions in the Central Valley, up to ~65 million landbirds migrate through in the spring and up to ~48 million in the fall. In the spring and fall, respectively, up to 37 and up to 30 species had at least 1% of their continental population migrate through the study regions. We also quantified the spatial concentration of each species across latitudinal transects to determine the extent to which study regions were acting as migratory bottlenecks. Landbird abundances were spatially concentrated in study regions 29.4% of all migration weeks, indicating that each study region acts as a migratory bottleneck. This application of eBird data is a powerful approach to quantifying the importance of sites to migrating birds. Our results provide evidence of population-level importance of the Central Valley and Colorado River Delta for many migratory landbirds.
The value of saline lakes and associated wetlands as habitats in the xeric Great Basin is dependent on having water of sufficient quantity and quality to support wetland-dependent birds. To inform conservation and management of these habitats, models are needed to link birds and hydrological changes due to climate and human water use. We modeled seasonal relationships between counts for 35 migratory shorebird, waterfowl, and other waterbird species or taxonomic groups and hydrological metrics at Bear River Bay, a globally Important Bird Area at Utah's Great Salt Lake. We found that increased fall surface flows to the bay increased counts of 13 species, including American Avocets (Recurvirostra americana), American White Pelicans (Pelecanus erythrorhynchos), American Wigeons (Mareca americana), Northern Pintail (Anas acuta), Redheads (Aythya americana), and Ruddy Ducks (Oxyura jamaicensis). Increased spring surface flows increased counts of Forster's Terns (Sterna forsteri) and the sandpiper group, whereas intermediate spring flows produced peak counts for American White Pelicans. Thus, conservation or management actions that increase seasonal flows to Bear River Bay are expected to increase bay use by diverse members of the avian community. Counts for 11 species or taxonomic groups responded positively or negatively to the seasonal elevation of Great Salt Lake, and these responses are hypothesized to reflect the relative availability of habitats within the bay versus the lake as a whole. Our models provide tools that allow managers to understand how hydrological changes associated with climate change and human water use will affect birds in Bear River Bay. Addressing lake-wide and regional population implications of changing hydrological conditions at Bear River Bay, Great Salt Lake, and other locations across the Great Basin will require a regionally coordinated assessment of hydrology, habitat, and bird movements in response to changing habitat conditions.
Millions of wetland-dependent birds annually depend on saline lakes and associated wetlands in the western United States. Understanding the population status and trends of birds with different life histories and habitats can guide efforts to secure water resources needed to sustain bird habitats. We used a 21-year dataset to examine population trends for 24 survey units presumed to be high-quality habitat for migratory shorebirds, waterfowl, and other waterbirds at Great Salt Lake and associated wetlands. As expected for high-quality habitats, we found stable or positive trends for 36 of 37 species or groups in fall, spring, or both seasons when considering survey units in aggregate. Despite stable or positive aggregate trends, negative trends did occur in some individual survey units. Foraging, migration distance, and taxonomic groupings were unrelated to trend direction. Research is needed to test whether survey units represent high-quality habitat. With declining regional water resources, stable and positive aggregate trends reinforce the importance of surveyed units at Great Salt Lake and associated wetlands to wetland-dependent birds. Ensuring continuation of stable and positive trends will require identifying environmental factors -including water quantity and quality -driving trends, and require coordinated regional management and monitoring of wetland-dependent birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.