During the last nearly 50 years, the blood lactate curve and lactate thresholds (LTs) have become important in the diagnosis of endurance performance. An intense and ongoing debate emerged, which was mainly based on terminology and/or the physiological background of LT concepts. The present review aims at evaluating LTs with regard to their validity in assessing endurance capacity. Additionally, LT concepts shall be integrated within the 'aerobic-anaerobic transition' - a framework which has often been used for performance diagnosis and intensity prescriptions in endurance sports. Usually, graded incremental exercise tests, eliciting an exponential rise in blood lactate concentrations (bLa), are used to arrive at lactate curves. A shift of such lactate curves indicates changes in endurance capacity. This very global approach, however, is hindered by several factors that may influence overall lactate levels. In addition, the exclusive use of the entire curve leads to some uncertainty as to the magnitude of endurance gains, which cannot be precisely estimated. This deficiency might be eliminated by the use of LTs. The aerobic-anaerobic transition may serve as a basis for individually assessing endurance performance as well as for prescribing intensities in endurance training. Additionally, several LT approaches may be integrated in this framework. This model consists of two typical breakpoints that are passed during incremental exercise: the intensity at which bLa begin to rise above baseline levels and the highest intensity at which lactate production and elimination are in equilibrium (maximal lactate steady state [MLSS]). Within this review, LTs are considered valid performance indicators when there are strong linear correlations with (simulated) endurance performance. In addition, a close relationship between LT and MLSS indicates validity regarding the prescription of training intensities. A total of 25 different LT concepts were located. All concepts were divided into three categories. Several authors use fixed bLa during incremental exercise to assess endurance performance (category 1). Other LT concepts aim at detecting the first rise in bLa above baseline levels (category 2). The third category consists of threshold concepts that aim at detecting either the MLSS or a rapid/distinct change in the inclination of the blood lactate curve (category 3). Thirty-two studies evaluated the relationship of LTs with performance in (partly simulated) endurance events. The overwhelming majority of those studies reported strong linear correlations, particularly for running events, suggesting a high percentage of common variance between LT and endurance performance. In addition, there is evidence that some LTs can estimate the MLSS. However, from a practical and statistical point of view it would be of interest to know the variability of individual differences between the respective threshold and the MLSS, which is rarely reported. Although there has been frequent and controversial debate on the LT phenomenon during the l...
The present study aimed to analyse the influence of speed and power abilities in goal situations in professional football. During the second half of the season 2007/08, videos of 360 goals in the first German national league were analysed by visual inspection. For the assisting and the scoring player the situations immediately preceding the goal were evaluated. The observed actions were categorised as: no powerful action, rotation (around the body's centre-line), straight sprint, change-in-direction sprint, jump, or a combination of those categories. Two hundred and ninety-eight (83%) goals were preceded by at least one powerful action of the scoring or the assisting player. Most actions for the scoring player were straight sprints (n = 161, 45% of all analysed goals, P < 0.001) followed by jumps (n = 57, 16%), rotations and change-in-direction sprints (n = 22, 6% each). Most sprints were conducted without an opponent (n = 109, P < 0.001) and without the ball (n = 121, P < 0.001). Similarly, for the assisting player the most frequent action was a straight sprint (n = 137, P < 0.001) followed by rotations (n = 28), jumps (n = 22) and change-in-direction sprints (n = 18). The straight sprints were mostly conducted with the ball (n = 93, P = 0.003). In conclusion, straight sprinting is the most frequent action in goal situations. Power and speed abilities are important within decisive situations in professional football and, thus, should be included in fitness testing and training.
Although its true function remains unclear, sleep is considered critical to human physiological and cognitive function. Equally, since sleep loss is a common occurrence prior to competition in athletes, this could significantly impact upon their athletic performance. Much of the previous research has reported that exercise performance is negatively affected following sleep loss; however, conflicting findings mean that the extent, influence, and mechanisms of sleep loss affecting exercise performance remain uncertain. For instance, research indicates some maximal physical efforts and gross motor performances can be maintained. In comparison, the few published studies investigating the effect of sleep loss on performance in athletes report a reduction in sport-specific performance. The effects of sleep loss on physiological responses to exercise also remain equivocal; however, it appears a reduction in sleep quality and quantity could result in an autonomic nervous system imbalance, simulating symptoms of the overtraining syndrome. Additionally, increases in pro-inflammatory cytokines following sleep loss could promote immune system dysfunction. Of further concern, numerous studies investigating the effects of sleep loss on cognitive function report slower and less accurate cognitive performance. Based on this context, this review aims to evaluate the importance and prevalence of sleep in athletes and summarises the effects of sleep loss (restriction and deprivation) on exercise performance, and physiological and cognitive responses to exercise. Given the equivocal understanding of sleep and athletic performance outcomes, further research and consideration is required to obtain a greater knowledge of the interaction between sleep and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.