Introduction Coronavirus disease of 2019 (COVID-19) is a lower respiratory tract infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease can impact the cardiovascular system and lead to abnormal electrocardiographic (ECG) findings. Emergency clinicians must be aware of the ECG manifestations of COVID-19. Objective This narrative review outlines the pathophysiology and electrocardiographic findings associated with COVID-19. Discussion COVID-19 is a potentially critical illness associated with a variety of ECG abnormalities, with up to 90% of critically ill patients demonstrating at least one abnormality. The ECG abnormalities in COVID-19 may be due to cytokine storm, hypoxic injury, electrolyte abnormalities, plaque rupture, coronary spasm, microthrombi, or direct endothelial or myocardial injury. While sinus tachycardia is the most common abnormality, others include supraventricular tachycardias such as atrial fibrillation or flutter, ventricular arrhythmias such as ventricular tachycardia or fibrillation, various bradycardias, interval and axis changes, and ST segment and T waves changes. Several ECG presentations are associated with poor outcome, including atrial fibrillation, QT interval prolongation, ST segment and T wave changes, and ventricular tachycardia/fibrillation. Conclusions This review summarizes the relevant ECG findings associated with COVID-19. Knowledge of these findings in COVID-19-related electrocardiographic presentations may assist emergency clinicians in the evaluation and management of potentially infected and infected patients.
Background Acute chloroquine and hydroxychloroquine toxicity is characterized by a combination of direct cardiovascular effects and electrolyte derangements with resultant dysrhythmias and is associated with significant morbidity and mortality. Objective This review describes acute chloroquine and hydroxychloroquine toxicity, outlines the complex pathophysiologic derangements, and addresses the emergency department (ED) management of this patient population. Discussion Chloroquine and hydroxychloroquine are aminoquinoline derivatives widely used in the treatment of rheumatologic diseases including systemic lupus erythematosus and rheumatoid arthritis as well as for malaria prophylaxis. In early 2020, anecdotal reports and preliminary data suggested utility of hydroxychloroquine in attenuating viral loads and symptoms in patients with SARS-CoV-2 infection. Aminoquinoline drugs pose unique and significant toxicological risks, both during their intended use as well as in unsupervised settings by laypersons. The therapeutic range for chloroquine is narrow. Acute severe toxicity is associated with 10–30% mortality owing to a combination of direct cardiovascular effects and electrolyte derangements with resultant dysrhythmias. Treatment in the ED is focused on decontamination, stabilization of cardiac dysrhythmias, hemodynamic support, electrolyte correction, and seizure prevention. Conclusions An understanding of the pathophysiology of acute chloroquine and hydroxychloroquine toxicity and available emergency treatments can assist emergency clinicians in reducing the immediate morbidity and mortality associated with this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.