Although NK cells are considered innate, recent studies in mice revealed the existence of a unique lineage of hepatic CD49a+DX5− NK cells with adaptive-like features. Development of this NK cell lineage is, in contrast to conventional NK cells, dependent on T-bet but not Eomes. In this study, we describe the identification of a T-bet+Eomes−CD49a+ NK cell subset readily detectable in the human liver, but not in afferent or efferent hepatic venous or peripheral blood. Human intrahepatic CD49a+ NK cells express killer cell Ig-like receptor and NKG2C, indicative of having undergone clonal-like expansion, are CD56bright, and express low levels of CD16, CD57, and perforin. After stimulation, CD49a+ NK cells express high levels of inflammatory cytokines but degranulate poorly. CD49a+ NK cells retain their phenotype after expansion in long-term in vitro cultures. These results demonstrate the presence of a likely human counterpart of mouse intrahepatic NK cells with adaptive-like features.
EVAC is an effective endoscopic treatment option for intrathoracic leaks and showed higher effectiveness than stent placement in our cohort.
Early detection of malignant biliary tract diseases, especially cholangiocarcinoma (CC) in patients with primary sclerosing cholangitis (PSC), is very difficult and often comes too late to give the patient a therapeutic benefit. We hypothesize that bile proteomic analysis distinguishes CC from nonmalignant lesions. We used capillary electrophoresis mass spectrometry (CE-MS) to identify disease-specific peptide patterns in patients with choledocholithiasis (n 5 16), PSC (n 5 18), and CC (n 5 16) in a training set. A model for differentiation of choledocholithiasis from PSC and CC (PSC/CC model) and another model distinguishing CC from PSC (CC model) were subsequently validated in independent cohorts (choledocholithiasis [n 5 14], PSC [n 5 18] and CC [n 5 25]). Peptides were characterized by sequencing. Application of the PSC/CC model in the independent test cohort resulted in correct exclusion of 12/14 bile samples from patients with choledocholithiasis and identification of 40/43 patients with PSC or CC (86% specificity, 93% sensitivity). The corresponding receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.93 (95% confidence interval [CI]: 0.82-0.98, P 5 0.0001). The CC model succeeded in an accurate detection of 14/18 bile samples from patients with PSC and 21/25 samples with CC (78% specificity, 84% sensitivity) in the independent cohort, resulting in an AUC value of 0.87 (95% CI: 0.73-0.95, P 5 0.0001) in ROC analysis. Eight out of 10 samples of patients with CC complicating PSC were identified. Conclusion: Bile proteomic analysis discriminates benign conditions from CC accurately. This method may become a diagnostic tool in future as it offers a new possibility to diagnose malignant bile duct disease and thus enables efficient therapy particularly in patients with PSC. (HEPATOLOGY 2011;53:875-884)
Gilbert's disease leads to intermittent non-hemolytic hyperbilirubinemia by a reduction of hepatic bilirubin glucuronidation associated with the presence of the UDP-glucuronosyltransferase (UGT) 1A1*28 polymorphism. It is considered benign because it does not result in hepatocellular damage. However, pharmacogenetic analyses have linked UGT1A1*28 to drug toxicity and cancer predisposition. The protease inhibitor atazanavir (ATV) is an inhibitor of hepatic UGT activity leading to hyperbilirubinemia in individual patients. Whether this is linked specifically to UGT1A1*28 or to more complex variants influencing glucuronidation is unclear. One hundred and six ATV-treated patients were characterized and genotyped for UGT1A1*28, the UGT1A3 (-66C) and UGT1A7 (-57G) promoter variants, and UGT1A7 129K/131K . ATV treatment increased median bilirubin levels from 10 to 41 mol/L (P ؍ .001) with hyperbilirubinemia exceeding 43 mol/L in 37%. Hyperbilirubinemia over 43 mol/L was significantly associated not only with UGT1A1*28 but also with UGT1A3-66C, UGT1A7-57G, and UGT1A7 129K/131K , although these variants do not naturally occur in linkage dysequilibrium in blood donors. Homozygous combinations of UGT1A1*28 with the other variants increased from 7.4% (normal bilirubin to 42 mol/L) to 41% to 46.1% (43 to >85 mol/L), and 100% (>85 mol/L). All six patients with hyperbilirubinemia greater than 85 mol/L were homozygous for all four variants identifying a haplotype inherited on a single allele. In conclusion, the genetic variant associated with Gilbert's disease is identified as part of a haplotype of four UGT1A variants spanning three genes at the UGT1A gene locus. This haplotype predisposes to hyperbilirubinemia in ATV treatment and may have an additional role as a pharmacogenomic risk factor for drug therapy. (HEPATOLOGY 2006;44:1324-1332
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.