This thesis is concerned with the mathematical analysis of models for Micro-Electro-Mechanical Systems (MEMS). These models arise in the form of coupled partial differential equations with a moving boundary. Although MEMS devices are often operated in non-isothermal environments, temperature is usually neglected in the mathematical investigations. Therefore the focus of our modelling is to incorporate temperature and the related material properties. We derive two models, both of which focus on different aspects of the underlying physics. Afterwards we prove local well-posedness in time and also global well-posedness under additional assumptions on the model's parameters. Lastly, we provide some numerical results which exemplify how temperature and the model's material constants change the qualitative behaviour of the system.
This thesis is concerned with the mathematical analysis of models for Micro-Electro-Mechanical Systems (MEMS). These models arise in the form of coupled partial differential equations with a moving boundary. Although MEMS devices are often operated in non-isothermal environments, temperature is usually neglected in the mathematical investigations. Therefore the focus of our modelling is to incorporate temperature and the related material properties. We derive two models, both of which focus on different aspects of the underlying physics. Afterwards we prove local well-posedness in time and also global well-posedness under additional assumptions on the model's parameters.Lastly, we provide some numerical results which exemplify how temperature and the model's material constants change the qualitative behaviour of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.