The Landscape Reconstruction Algorithm (LRA) overcomes some of the fundamental problems in pollen analysis for quantitative reconstruction of vegetation. LRA first uses the REVEALS model to estimate regional vegetation using pollen data from large sites and then the LOVE model to estimate vegetation composition within the relevant source area of pollen (RSAP) at small sites by subtracting the background pollen estimated from the regional vegetation composition. This study tests LRA using training data from forest hollows in northern Michigan (35 sites) and northwestern Wisconsin (43 sites). In northern Michigan, surface pollen from 152-ha and 332-ha lakes is used for REVEALS. Because of the lack of pollen data from large lakes in northwestern Wisconsin, we use pollen from 21 hollows randomly selected from the 43 sites for REVEALS. RSAP indirectly estimated by LRA is comparable to the expected value in each region. A regression analysis and permutation test validate that the LRA-based vegetation reconstruction is significantly more accurate than pollen percentages alone in both regions. Even though the site selection in northwestern Wisconsin is not ideal, the results are robust. The LRA is a significant step forward in quantitative reconstruction of vegetation.
Aim We use a retrospective approach to reconstruct the past distribution of fire in New England and to investigate the important drivers of this pattern across the period of European arrival to North America.Location Our study sites are in New England, and range from pitch pine and oak forests of coastal Massachusetts, pine and hardwood forests of central Massachusetts, and northern hardwood and spruce fir forests of northern Massachusetts and Vermont.Methods We collected sediment profiles from eighteen lakes across the study area to assess fossil charcoal and pollen abundance over the past 1000 years, including the time period of European arrival and settlement.Results Based on presettlement pollen composition, our study sites are divided into three vegetation types: (1) pitch pine and oak, (2) oak, pine and hardwood and (3) northern hardwoods. The abundance of presettlement charcoal in these lakes is closely related to climate and the composition of surrounding vegetation. Charcoal is most abundant in pitch pine forests and least common in northern hardwood forests. Following the arrival of Europeans, charcoal abundance increased at most sites substantially, and vegetation composition changed in a direction of either greater dominance by pitch pine or white pine, depending on whether the forests were located in the southern or northern part of New England. Main conclusionsThe major factor influencing the distribution of fire across New England is climate, which has a direct effect on the physical conditions conducive to fire ignition and spread and an indirect effect on fire through its control on the distribution of vegetation at this spatial scale. We find evidence that other factors exert some control over local fire regimes as well including landforms and their impact on vegetation composition, firebreaks and prevailing winds. Native Americans likely influenced the local occurrence of fire, but their impact on regional fire regimes in New England is not apparent from this or other studies. However, additional palaeoecological, archaeological and historical work needs to be carried out to better address this question. In contrast, Europeans had a dramatic effect on fire throughout the New England landscape, increasing its occurrence almost everywhere.
Abstract. Human disturbance in northeastern North America over the past four centuries has led to dramatic change in vegetation composition and ecosystem processes, obscuring the influence of climate and edaphic factors on vegetation patterns. We use a paleoecological approach on Cape Cod, Massachusetts, to assess landscape-scale variation in pitch pine-oak vegetation and fire occurrence on the pre-European landscape and to determine changes resulting from European land use. Fossil pollen and charcoal preserved in seven lakes confirm a close link between landform and the pre-European distribution of vegetation. Pine forests, dominated by Pinus rigida, were closely associated with xeric outwash deposits, whereas oak-hardwood forests were associated with landforms having finer grained soils and variable topography. In general, fire was much more abundant on Cape Cod than most other areas in New England, but its occurrence varied geographically at two scales. On the western end of Cape Cod, fires were more prevalent in pine forests (outwash) than in oak-hardwood forests (moraines). In contrast, fires were less common on the narrow and north-south trending eastern Cape, perhaps because of physical limits on fire spread.The most rapid and substantial changes during the past 2000 years were initiated by European settlement, which produced a vegetation mosaic that today is less clearly tied to landform. Quercus and other hardwood trees declined in abundance in the early settlement period in association with land clearance, whereas Pinus has increased, especially during the past century, through natural reforestation and planting of abandoned fields and pastures. An increase in fossil charcoal following European settlement suggests that fire occurrence has risen substantially as a result of forest clearance and other land uses, reaching levels greater than at any time over the past 2000 years. Although fire was undoubtedly used by Native Americans and may have been locally important, we find no clear evidence that humans extensively modified fire regimes or vegetation before European settlement. Instead, climate change over the past several thousand years and European land use over the past 300 years have been the most important agents of change on this landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.