A scheme for locally adaptive bandwidth selection is proposed which sensitively shrinks the bandwidth of a kernel estimator at lowest density regions such as the support boundary which are unknown to the statistician. In case of a Hölder continuous density, this locally minimax-optimal bandwidth is shown to be smaller than the usual rate, even in case of homogeneous smoothness. Some new type of risk bound with respect to a density-dependent standardized loss of this estimator is established. This bound is fully nonasymptotic and allows to deduce convergence rates at lowest density regions that can be substantially faster than n −1/2 . It is complemented by a weighted minimax lower bound which splits into two regimes depending on the value of the density. The new estimator adapts into the second regime, and it is shown that simultaneous adaptation into the fastest regime is not possible in principle as long as the Hölder exponent is unknown. Consequences on plug-in rules for support recovery are worked out in detail. In contrast to those with classical density estimators, the plug-in rules based on the new construction are minimax-optimal, up to some logarithmic factor.
We develop honest and locally adaptive confidence bands for probability densities. They provide substantially improved confidence statements in case of inhomogeneous smoothness, and are easily implemented and visualized. The article contributes conceptual work on locally adaptive inference as a straightforward modification of the global setting imposes severe obstacles for statistical purposes. Among others, we introduce a statistical notion of local Hölder regularity and prove a correspondingly strong version of local adaptivity. We substantially relax the straightforward localization of the self-similarity condition in order not to rule out prototypical densities. The set of densities permanently excluded from the consideration is shown to be pathological in a mathematically rigorous sense. On a technical level, the crucial component for the verification of honesty is the identification of an asymptotically least favorable stationary case by means of Slepian's comparison inequality. P ⊗n p sup t∈ [a,b] |C n (t, α)| ≥ c · r n (β) < ε.
In this paper, aliasing effects are investigated for random fields defined on the d-dimensional sphere S d and reconstructed from discrete samples. First, we introduce the concept of an aliasing function on S d . The aliasing function allows one to identify explicitly the aliases of a given harmonic coefficient in the Fourier decomposition. Then, we exploit this tool to establish the aliases of the harmonic coefficients approximated by means of the quadrature procedure named spherical uniform sampling. Subsequently, we study the consequences of the aliasing errors in the approximation of the angular power spectrum of an isotropic random field, the harmonic decomposition of its covariance function. Finally, we show that bandlimited random fields are aliases-free, under the assumption of a sufficiently large amount of nodes in the quadrature rule.2010 Mathematics Subject Classification. 62M15, 62M40.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.