Emerging chemotherapy drugs and targeted therapies have been widely applied in anticancer treatment and have given oncologists a promising future. Nevertheless, regeneration and recurrence are still huge obstacles on the way to cure cancer. Cancer stem cells (CSCs) are capable of self-renewal, tumor initiation, recurrence, metastasis, therapy resistance, and reside as a subset in many, if not all, cancers. Therefore, therapeutics specifically targeting and killing CSCs are being identified, and may be promising and effective strategies to eliminate cancer. MicroRNAs (miRNAs, miRs), small noncoding RNAs regulating gene expression in a post-transcriptional manner, are dysregulated in most malignancies and are identified as important regulators of CSCs. However, limited knowledge exists for biological and molecular mechanism by which miRNAs regulate CSCs. In this article, we review CSCs, miRNAs and the interactions between miRNA regulation and CSCs, with a specific focus on the molecular mechanisms and clinical applications. This review will help us to know in detail how CSCs are regulated by miRNAs networks and also help to develop more effective and secure miRNA-based clinical therapies.
Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood.Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes.Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression.Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/β-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/β-catenin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.