Hydrogen peroxide (H2O2) can be used as an emergency method to selectively suppress cyanobacterial blooms in lakes and drinking water reservoirs. However, it is largely unknown how environmental parameters alter the effectiveness of H2O2 treatments. In this study, the toxic cyanobacterial strain Microcystis aeruginosa PCC 7806 was treated with a range of H2O2 concentrations (0 to 10 mg/L), while being exposed to different light intensities and light colors. H2O2 treatments caused a stronger decline of the photosynthetic yield in high light than in low light or in the dark, and also a stronger decline in orange than in blue light. Our results are consistent with the hypothesis that H2O2 causes major damage at photosystem II (PSII) and interferes with PSII repair, which makes cells more sensitive to photoinhibition. Furthermore, H2O2 treatments caused a decrease in cell size and an increase in extracellular microcystin concentrations, indicative of leakage from disrupted cells. Our findings imply that even low H2O2 concentrations of 1–2 mg/L can be highly effective, if cyanobacteria are exposed to high light intensities. We therefore recommend performing lake treatments during sunny days, when a low H2O2 dosage is sufficient to suppress cyanobacteria, and may help to minimize impacts on non-target organisms.
Intertidal photosynthetic microbial mats from the Wadden Sea island Schiermonnikoog were examined for microscale (millimetre) spatial distributions of viruses, prokaryotes and oxygenic photoautotrophs (filamentous cyanobacteria and benthic diatoms) at different times of the year. Abundances of viruses and prokaryotes were among the highest found in benthic systems (0.05–5.43 × 1010 viruses g−1 and 0.05–2.14 × 1010 prokaryotes g−1). The spatial distribution of viruses, prokaryotes and oxygenic photoautotrophs were highly heterogeneous at mm scales. The vertical distributions of both prokaryotic and viral abundances were related to the depth of the oxygenic photoautotrophic layer, implying that the photosynthetic mat fuelled the microbial processes in the underlying layer. Our data suggest that viruses could make an important component in these productive environments potentially affecting the biodiversity and nutrient cycling within the mat.
Summary Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2O2). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2O2 but can be protected by less‐sensitive species such as green algae. Our laboratory results show that green algae degrade H2O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two‐component H2O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2O2 and thereby protect the bloom‐forming cyanobacteria.
Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little is known about the impacts of these H2O2 treatments on other members of the microbial community. In this study, we investigated changes in microbial community composition during two lake treatments with low H2O2 concentrations (target: 2.5 mg L−1) and in two series of controlled lake incubations. The results show that the H2O2 treatments effectively suppressed the dominant cyanobacteria Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix agardhii. Microbial community analysis revealed that several Proteobacteria (e.g., Alteromonadales, Pseudomonadales, Rhodobacterales) profited from the treatments, whereas some bacterial taxa declined (e.g., Verrucomicrobia). In particular, the taxa known to be resistant to oxidative stress (e.g., Rheinheimera) strongly increased in relative abundance during the first 24 h after H2O2 addition, but subsequently declined again. Alpha and beta diversity showed a temporary decline but recovered within a few days, demonstrating resilience of the microbial community. The predicted functionality of the microbial community revealed a temporary increase of anti-ROS defenses and glycoside hydrolases but otherwise remained stable throughout the treatments. We conclude that the use of low concentrations of H2O2 to suppress cyanobacterial blooms provides a short-term pulse disturbance but is not detrimental to lake microbial communities and their ecosystem functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.