Nine non-noble-metal catalysts (NNMCs) from five different laboratories were investigated for the catalysis of O(2) electroreduction in an acidic medium. The catalyst precursors were synthesized by wet impregnation, planetary ball milling, a foaming-agent technique, or a templating method. All catalyst precursors were subjected to one or more heat treatments at 700-1050 degrees C in an inert or reactive atmosphere. These catalysts underwent an identical set of electrochemical characterizations, including rotating-disk-electrode and polymer-electrolyte membrane fuel cell (PEMFC) tests and voltammetry under N(2). Ex situ characterization was comprised of X-ray photoelectron spectroscopy, neutron activation analysis, scanning electron microscopy, and N(2) adsorption and its analysis with an advanced model for carbonaceous powders. In PEMFC, several NNMCs display mass activities of 10-20 A g(-1) at 0.8 V versus a reversible hydrogen electrode, and one shows 80 A g(-1). The latter value corresponds to a volumetric activity of 19 A cm(-3) under reference conditions and represents one-seventh of the target defined by the U.S. Department of Energy for 2010 (130 A cm(-3)). The activity of all NNMCs is mainly governed by the microporous surface area, and active sites seem to be hosted in pore sizes of 5-15 A. The nitrogen and metal (iron or cobalt) seem to be present in sufficient amounts in the NNMCs and do not limit activity. The paper discusses probable directions for synthesizing more active NNMCs. This could be achieved through multiple pyrolysis steps, ball-milling steps, and control of the powder morphology by the addition of foaming agents and/or sulfur.
Insufficient catalytic activity and durability are key barriers to the commercial deployment of low temperature polymer electrolyte membrane (PEM) and direct-methanol fuel cells (DMFCs). Recent observations suggest that carbon-based catalyst support materials can be systematically doped with nitrogen to create strong, beneficial catalyst-support interactions which substantially enhance catalyst activity and stability. Data suggest that nitrogen functional groups introduced into a carbon support appear to influence at least three aspects of the catalyst/support system: 1) modified nucleation and growth kinetics during catalyst nanoparticle deposition, which results in smaller catalyst particle size and increased catalyst particle dispersion, 2) increased support/catalyst chemical binding (or ''tethering''), which results in enhanced durability, and 3) catalyst nanoparticle electronic structure modification, which enhances intrinsic catalytic activity. This review highlights recent studies that provide broad-based evidence for these nitrogen-modification effects as well as insights into the underlying fundamental mechanisms.
The oxygen reduction reaction (ORR) processes in alkaline media that occur on a family of electrocatalyst materials derived from a Co containing precursor and a polypyrrole/C composite material (PPy/C) are investigated here. The effects of Co loading and heat treatment temperature on the CoPPy/C materials are revealed through structural evaluations and electrochemical studies. Principle component analysis (PCA), a mutivariant analysis (MVA) technique, is used to establish structure-to-property correlations for the CoPPy/C materials. In all cases, pyrolysis leads to formation of a composite catalyst material, featuring Co nanoparticles coated with Co oxides and Co2+ species associated with N−C moieties that originate from the polypyrrole structures. Based on these correlations, we are able to propose an ORR mechanism that occurs on this class of non-platinum based fuel cell cathode catalysts. The correlations suggest the presence of a dual site functionality where O2 is initially reduced at a Co2+ containing N−C type site in a 2 e− process to form HO2
−, an intermediate reaction product. Intermediate species (HO2
−) can react further in the series type ORR mechanism at the decorating Co
x
O
y
/Co surface nanoparticle phase. The HO2
− species can undergo either further electrochemical reduction to form OH− species or chemical disprotonation to form OH− species and molecular O2.
A study on the oxygen reduction reaction ͑ORR͒ mechanism that occurs on non-platinum electrocatalysts, specifically materials derived from pyrolyzed cobalt tetramethoxyphenyl porphyrin in acidic media, is presented here. Reactant and product flux analysis is performed on rotating ring-disk electrode ͑RRDE͒ data to evaluate the non-platinum-based materials. An in-depth X-ray photelectron spectroscopy surface characterization analysis is performed and discussed in the context of structure-to-property correlations that are established using a multivariant analysis technique. Pyrolyzed cobalt porphyrin catalysts are highly heterogeneous materials that include both Co species that are associated with nitrogen ͑CoN x ͒ and Co nanoparticles coated by "native" Co oxides. This study proposes an ORR mechanism that occurs on this class of non-Pt electrocatalysts based on structure-toproperty correlations and qualitative analysis of the RRDE flux data. The combined flux analysis and structural characterization suggests that the series type, 2 ϫ 2 peroxide ORR pathway is supported on the bifunctional catalyst materials. In this model, two distinct active sites are involved following a bifunctional catalysis scheme. It is suggested that oxygen is initially adsorbed and reduced to peroxide on a CoN x -type site. The intermediate product, peroxide, can be further reduced to water in a series reaction step on a decorating active cobalt oxide species on the catalyst surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.