The membrane protein caveolin-1 (Cav1) recently emerged as a novel oncogene involved in prostate cancer progression with opposed regulation in epithelial tumor cells and the tumor stroma. Here we examined the role of stromal Cav1 for growth and radiation response of MPR31-4 prostate cancer xenograft tumors using Cav1-deficient C57Bl/6 mice. Syngeneic MPR31-4 tumors grew faster when implanted into Cav1-deficient mice. Increased tumor growth on Cav1-deficient mice was linked to decreased integration of smooth muscle cells into the wall of newly formed blood vessels and thus with a less stabilized vessel phenotype compared with tumors from Cav1 wild-type animals. However, tumor growth delay of MPR31-4 tumors grown on Cav1 knockout mice to a single high-dose irradiation with 20 Gray was more pronounced compared with tumors grown on wild-type mice. Increased radiation-induced tumor growth delay in Cav1-deficient mice was associated with an increased endothelial cell apoptosis. In vitro studies using cultured endothelial cells (ECs) confirmed that the loss of Cav1 expression increases sensitivity of ECs to radiation-induced apoptosis and reduces their clonogenic survival after irradiation. Immunohistochemical analysis of human tissue specimen further revealed that although Cav1 expression is mostly reduced in the tumor stroma of advanced and metastatic prostate cancer, the vascular compartment still expresses high levels of Cav1. In conclusion, the radiation response of MPR31-4 prostate tumors is critically regulated by Cav1 expression in the tumor vasculature. Thus, Cav1 might be a promising therapeutic target for combinatorial therapies to counteract radiation resistance of prostate cancer at the level of the tumor vasculature.
Pulsed laser ablation of pressed yttrium iron garnet powders in water is studied and compared to the ablation of a single-crystal target. We find that target porosity is a crucial factor, which has far-reaching implications on nanoparticle productivity. Although nanoparticle size distributions obtained by analytical disc centrifugation and transmission electron microscopy (TEM) are in agreement, X-ray diffraction and energy dispersive X-ray analysis show that only nanoparticles obtained from targets with densities close to that of a bulk target lead to comparable properties. Our findings also show why the gravimetrical measurement of nanoparticle productivity is often flawed and needs to be complemented by colloidal productivity measurements. The synthesized YIG nanoparticles are further reduced in size by laser fragmentation to obtain sizes smaller than 3 nm. Since the particle diameters are close to the YIG lattice constant, these ultrasmall nanoparticles reveal an immense change of the magnetic properties, exhibiting huge coercivity (0.11 T) and irreversibility fields (8 T) at low temperatures.
The distinctive feature of upconverting compounds to absorb and emit light in the near-infrared region has made upconverting nanoparticles of great interest in various application fields. Nevertheless, these colloids show a highly hydrophobic behavior, and therefore, the use of a proper stabilizing agent is necessary in most cases. Although few chemical techniques for colloid stabilization are available, it is still difficult to achieve a fully reproducible synthesis method for stable upconverting nanoparticle colloids. In this work, upconversion 18 %Yb:1 %Er:NaYF nanoparticles were produced by ultrafast pulsed laser ablation in a water and 2-[2-(2-methoxyethoxy)- ethoxy]acetic acid (MEEAA) environment to assess the stabilization effect of the surfactant on the nanoparticle colloid properties. The effects of the laser fluence and MEEAA concentration on the nanoparticles' properties were investigated by TEM, EDS, and emission spectra analyses. The results show that ultrashort pulsed laser ablation in liquid allows generating highly spherical nanoparticles with conserved stoichiometry and optical properties. Moreover, it is possible to obtain colloids with significantly higher stability and preserved optical properties by one-step PLAL processes directly in the MEEAA environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.