This article highlights about the fact that many speculate on the outcomes of design, but how many consider the process by which designs are executed. The seed for many of these emerging interdisciplinary programs in design is not new either—cutting-edge research and advancements invariably lie at the boundaries of departmental silos. The product-architecture program at Stevens has successfully integrated architecture, engineering, computation, and product development, attracting students with wide-ranging interests and diverse backgrounds in architecture, visual arts, industrial design, mathematics, computer science, and mechanical, aerospace, and biomedical engineering. By focusing on the product or system being designed, the program is dissolving boundaries in design education and launching students along trajectories of design leadership and social entrepreneurialism. As globalization moves engineering, business, and design closer together, many argued that interdisciplinary graduate design programs are the future for the United States to maintain its position in product leadership.
Many engineering departments struggle to meet “the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context” (Outcome h) that is required for ABET. As a result, engineering students receive meaningful contextual experiences in piecemeal fashion and graduate with a lack of concrete competencies that bridge knowledge and practice in the global world in which they will live and work. By considering products as designed artifacts with a history rooted in their development, our product archaeology framework combines concepts from archaeology with advances in cyber-enhanced product dissection to implement pedagogical innovations that address the significant educational gap. In this paper, we focus on assessing elements of a sustainable and scalable foundation that can support novel approaches aimed at educating engineering students to understand the global, economic, environmental, and societal context and impact of engineering solutions. This foundation is being developed across a network of partner institutions. We present recent results from freshman, sophomore, and senior courses at two of the partners in the national network of institutions.
Knowledge discovery in multi-dimensional data is a challenging problem in engineering design. For example, in trade space exploration of large design data sets, designers need to select a subset of data of interest and examine data from different data dimensions and within data clusters at different granularities. This exploration is a process that demands both humans, who can heuristically decide what data to explore and how best to explore it, and computers, which can quickly extract features that may be of interest in the data. Thus, to support this process of knowledge discovery, we need tools that can go beyond traditional computeroriented optimisation approaches and support advanced designer-centred trade space exploration and data interaction. This paper is an effort to address this need. In particular, we propose the interactive multiscalenested clustering and aggregation framework to support trade space exploration of multi-dimensional data common to design optimisation. A system prototype of this framework is implemented to allow users to visually examine large design data sets through interactive data clustering, aggregation, and visualisation. The paper also presents an evaluation study involving morphing wing design using this prototype system.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.