In high-throughput, distributed systems, such as large-scale banking infrastructure, synchronization between actors becomes a bottleneck in high-contention scenarios. This results in delays for users, and reduces opportunities for scaling such systems. This paper proposes Static Local Coordination Avoidance, which analyzes application invariants at compile time to detect whether messages are independent, so that synchronization at run time is avoided, and parallelism is increased. Analysis shows that in industry scenarios up to 60% of operations are independent. Initial performance evaluation shows that, in comparison to a standard 2-phase commit baseline, throughput is increased, and latency is reduced. As a result, scalability bottlenecks in high-contention scenarios in distributed actor systems are reduced for independent messages. CCS Concepts • Information systems → Distributed database transactions; • Software and its engineering → Domain specific languages; State systems; Model-driven software engineering; • Applied computing → Enterprise architectures; Event-driven architectures.
Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in tla + , reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in tla + enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.