We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2-X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations.
Due to interest in cell population heterogeneity, the development of new technology and methodologies for studying single cells has dramatically increased in recent years. The ideal single cell measurement system would be high throughput for statistical relevance, would measure the most important cellular parameters, and minimize disruption of normal cell function. We have developed a microwell array device capable of measuring single cell oxygen consumption rates (OCR). This OCR device is able to diffusionally isolate single cells and enables the quantitative measurement of oxygen consumed by a single cell with fmol/min resolution in a non-invasive and relatively high throughput manner. A glass microwell array format containing fixed luminescent sensors allows for future incorporation of additional cellular parameter sensing capabilities. To demonstrate the utility of the OCR device, we determined the oxygen consumption rates of a small group of single cells (12 to 18) for three different cells lines: murine macrophage cell line RAW264.7, human epithelial lung cancer cell line A549, and human Barrett's esophagus cell line CP-D.
The metabolic fluxes of central carbon metabolism were measured in chemostat-grown cultures of Methylobacterium extorquens AM1 with methanol as the sole organic carbon and energy source and growth-limiting substrate. Label tracing experiments were carried out using 70% (13)C-methanol in the feed, and the steady-state mass isotopomer distributions of amino acids derived from total cell protein were measured by gas chromatography coupled to mass spectrometry. Fluxes were calculated from the isotopomer distribution data using an isotopomer balance model and evolutionary error minimization algorithm. The combination of labeled methanol with unlabeled CO(2), which enters central metabolism in two different reactions, provided the discriminatory power necessary to allow quantification of the unknown fluxes within a reasonably small confidence interval. In wild-type M. extorquens AM1, no measurable flux was detected through pyruvate dehydrogenase or malic enzyme, and very little flux through alpha-ketoglutarate dehydrogenase (1.4% of total carbon). In contrast, the alpha-ketoglutarate dehydrogenase flux was 25.5% of total carbon in the regulatory mutant strain phaR, while the pyruvate dehydrogenase and malic enzyme fluxes remained insignificant. The success of this technique with growth on C(1) compounds suggests that it can be applied to help characterize the effects of other regulatory mutations, and serve as a diagnostic tool in the metabolic engineering of methylotrophic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.