The rotational state of Europa is only rather poorly constrained at present. It is known to rotate about an axis that is nearly perpendicular to the orbit plane, at a rate that is nearly constant and approximates the mean orbital rate. Small departures from a constant rotation rate and oscillations of the rotation axis both lead to stresses that may influence the location and orientation of surface tectonic features. However, at present geological evidence for either of these processes is disputed. We describe a variety of issues that future geodetic observations will likely resolve, including variations in the rate and direction of rotation, on a wide range of timescales. Since the external perturbations causing these changes are generally well known, observations of the amplitude and phase of the responses will provide important information about the internal structure of Europa. We focus on three aspects of the rotational dynamics: obliquity, forced librations, and possible small departures from a synchronous rotation rate. Europa's obliquity should be nonzero, while the rotation rate is likely to be synchronous unless lateral shell thickness variations occur. The tectonic consequences of a nonzero obliquity and true polar wander have yet to be thoroughly investigated.
An asymptotic representation of low-frequency, linear, isentropic g-modes of a star is developed without the usual neglect of the Eulerian perturbation of the gravitational potential. Our asymptotic representation is based on the use of asymptotic expansions adequate for solutions of singular perturbation problems (see, e.g., Kevorkian & Cole 1981).Linear, isentropic oscillation modes with frequency different from zero are governed by a fourth-order system of linear, homogeneous differential equations in the radial parts of the radial displacement ξ(r) and the divergence α(r). These equations take the formThe symbols have their usual meaning. N2 is the square of the frequency of Brunt-Väisälä. The functions K1 (r), K2 (r), K3 (r), K4 (r), depend on the equilibrium model, e.g.,We introduce the small expansion parameterand assume, for the sake of simplification, N2 to be positive everywhere in the star so that the star is everywhere convectively stable.
Abstract. We identify the pulsation mode of BW Vul by means of both the moment method and the method of photometric amplitudes and find a radial pulsation. We briefly study the non-linear behaviour of BW Vul.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.