Little work from the Natural Language Processing community has targeted the role of quantities in Natural Language Understanding. This paper takes some key steps towards facilitating reasoning about quantities expressed in natural language. We investigate two different tasks of numerical reasoning. First, we consider Quantity Entailment, a new task formulated to understand the role of quantities in general textual inference tasks. Second, we consider the problem of automatically understanding and solving elementary school math word problems. In order to address these quantitative reasoning problems we first develop a computational approach which we show to successfully recognize and normalize textual expressions of quantities. We then use these capabilities to further develop algorithms to assist reasoning in the context of the aforementioned tasks.
Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results (Stahlberg and Byrne, 2019). Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.
We present a model of morphological segmentation that jointly learns to segment and restore orthographic changes, e.g., funniest → fun-y-est. We term this form of analysis canonical segmentation and contrast it with the traditional surface segmentation, which segments a surface form into a sequence of substrings, e.g., funniest → funn-i-est. We derive an importance sampling algorithm for approximate inference in the model and report experimental results on English, German and Indonesian.
Decoding for many NLP tasks requires an effective heuristic algorithm for approximating exact search because the problem of searching the full output space is often intractable, or impractical in many settings. The default algorithm for this job is beam search—a pruned version of breadth-first search. Quite surprisingly, beam search often returns better results than exact inference due to beneficial search bias for NLP tasks. In this work, we show that the standard implementation of beam search can be made up to 10x faster in practice. Our method assumes that the scoring function is monotonic in the sequence length, which allows us to safely prune hypotheses that cannot be in the final set of hypotheses early on. We devise effective monotonic approximations to popular nonmonontic scoring functions, including length normalization and mutual information decoding. Lastly, we propose a memory-reduced variant of best-first beam search, which has a similar beneficial search bias in terms of downstream performance, but runs in a fraction of the time.
We present a framework for augmenting data sets from the Universal Dependencies project with Universal Decompositional Semantics. Where the Universal Dependencies project aims to provide a syntactic annotation standard that can be used consistently across many languages as well as a collection of corpora that use that standard, our extension has similar aims for semantic annotation. We describe results from annotating the English Universal Dependencies treebank, dealing with word senses, semantic roles, and event properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.