Traditional fact checking by experts and analysts cannot keep pace with the volume of newly created information. It is important and necessary, therefore, to enhance our ability to computationally determine whether some statement of fact is true or false. We view this problem as a link-prediction task in a knowledge graph, and present a discriminative path-based method for fact checking in knowledge graphs that incorporates connectivity, type information, and predicate interactions. Given a statement S of the form (subject, predicate, object), for example, (Chicago, capitalOf, Illinois), our approach mines discriminative paths that alternatively define the generalized statement (U.S. city, predicate, U.S. state) and uses the mined rules to evaluate the veracity of statement S. We evaluate our approach by examining thousands of claims related to history, geography, biology, and politics using a public, million node knowledge graph extracted from Wikipedia and PubMedDB. Not only does our approach significantly outperform related models, we also find that the discriminative predicate path model is easily interpretable and provides sensible reasons for the final determination.
The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks.
As crowd-sourced curation of news and information become the norm, it is important to understand not only how individuals consume information through social news Web sites, but also how they contribute to their ranking systems. In the present work, we introduce and make available a new dataset containing the activity logs that recorded all activity for 309 Reddit users for one year. Using this newly collected data, we present findings that highlight the browsing and voting behavior of the study's participants. We find that most users do not read the article that they vote on, and that, in total, 73% of posts were rated (i.e., upvoted or downvoted) without first viewing the content. We also show evidence of cognitive fatigue in the browsing sessions of users that are most likely to vote.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.