The Internet of Things (IoT) has gained significant recognition to become a novel sensing paradigm to interact with the physical world in this Industry 4.0 era. The IoTs are being used in many diverse applications that are part of our life and is growing to become the global digital nervous systems. It is quite evident that in the near future, hundreds of millions of individuals and businesses with billions will have smart-sensors and advanced communication technology, and these things will expand the boundaries of current systems. This will result in a potential change in the way we work, learn, innovate, live and entertain. The heterogeneous smart sensors within the Internet of Things are indispensable parts, which capture the raw data from the physical world by being the first port of contact. Often the sensors within the IoT are deployed or installed in harsh environments. This inevitably means that the sensors are prone to failure, malfunction, rapid attrition, malicious attacks, theft and tampering. All of these conditions cause the sensors within the IoT to produce unusual and erroneous readings, often known as outliers. Much of the current research has been done in developing the sensor outlier and fault detection models exclusively for the Wireless Sensor Networks (WSN), and adequate research has not been done so far in the context of the IoT. Wireless sensor network’s operational framework differ greatly when compared to IoT’s operational framework, using some of the existing models developed for WSN cannot be used on IoT’s for detecting outliers and faults. Sensor faults and outlier detection is very crucial in the IoT to detect the high probability of erroneous reading or data corruption, thereby ensuring the quality of the data collected by sensors. The data collected by sensors are initially pre-processed to be transformed into information and when Artificially Intelligent (AI), Machine Learning (ML) models are further used by the IoT, the information is further processed into applications and processes. Any faulty, erroneous, corrupted sensor readings corrupt the trained models, which thereby produces abnormal processes or outliers that are significantly distinct from the normal behavioural processes of a system. In this paper, we present a comprehensive review of the detecting sensor faults, anomalies, outliers in the Internet of Things and the challenges. A comprehensive guideline to select an adequate outlier detection model for the sensors in the IoT context for various applications is discussed.
Monotonicity with respect to all arguments is fundamental to the definition of aggregation functions. It is also a limiting property that results in many important nonmonotonic averaging functions being excluded from the theoretical framework. This work proposes a definition for weakly monotonic averaging functions, studies some properties of this class of functions, and proves that several families of important nonmonotonic means are actually weakly monotonic averaging functions. Specifically, we provide sufficient conditions for weak monotonicity of the Lehmer mean and generalized mixture operators. We establish weak monotonicity of several robust estimators of location and conditions for weak monotonicity of a large class of penalty‐based aggregation functions. These results permit a proof of the weak monotonicity of the class of spatial‐tonal filters that include important members such as the bilateral filter and anisotropic diffusion. Our concept of weak monotonicity provides a sound theoretical and practical basis by which (monotonic) aggregation functions and nonmonotonic averaging functions can be related within the same framework, allowing us to bridge the gap between these previously disparate areas of research.
Artificial intelligence and machine learning (AI/ML) could enhance the ability to detect patterns of clinical characteristics in lowback pain (LBP) and guide treatment. We conducted three systematic reviews to address the following aims: (a) review the status of AI/ML research in LBP, (b) compare its status to that of two established LBP classification systems (STarT Back, McKenzie). AI/ML in LBP is in its infancy: 45 of 48 studies assessed sample sizes <1000 people, 19 of 48 studies used ≤5 parameters in models, 13 of 48 studies applied multiple models and attained high accuracy, 25 of 48 studies assessed the binary classification of LBP versus no-LBP only. Beyond the 48 studies using AI/ML for LBP classification, no studies examined use of AI/ML in prognosis prediction of specific subgroups , and AI/ML techniques are yet to be implemented in guiding LBP treatment. In contrast, the STarT Back tool has been assessed for internal consistency, test−retest reliability, validity, pain and disability prognosis, and influence on pain and disability treatment outcomes. McKenzie has been assessed for inter-and intra-tester reliability, prognosis, and impact on pain and disability outcomes relative to other treatments. For AI/ML methods to contribute to the refinement of LBP (sub-)classification and guide treatment allocation, large data sets containing known and exploratory clinical features should be examined. There is also a need to establish reliability, validity, and prognostic capacity of AI/ML techniques in LBP as well as its ability to inform treatment allocation for improved patient outcomes and/or reduced healthcare costs.
Monotonicity with respect to all arguments is fundamental to the definition of aggregation functions. It is also a limiting property that results in many important non-monotonic averaging functions being excluded from the theoretical framework. This work proposes a definition for weakly monotonic averaging functions, studies some properties of this class of functions and proves that several families of important non-monotonic means are actually weakly monotonic averaging functions. Specifically we provide sufficient conditions for weak monotonicity of the Lehmer mean and generalised mixture operators. We establish weak monotonicity of several robust estimators of location and conditions for weak monotonicity of a large class of penalty-based aggregation functions. These results permit a proof of the weak monotonicity of the class of spatial-tonal filters that include important members such as the bilateral filter and anisotropic diffusion. Our concept of weak monotonicity provides a sound theoretical and practical basis by which (monotone) aggregation functions and non-monotone averaging functions can be related within the same framework, allowing us to bridge the gap between these previously disparate areas of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.