Reservoir architecture and the size and reservoir quality of producing bodies remain a central concern particularly in deepwater. In this case study, high-quality seismic imaging delineated the sand bodies and an intervening shale break between two stacked sands. Wireline evaluation in each well consisted of advanced DFA (Downhole Fluid Analysis), formation sampling and pressure measurements, borehole imaging and petrophysics. Reservoir fluid geodynamic analysis of Wireline asphaltene gradient measurements indicate that each sand body is laterally connected and that the shale break could be a baffle. Geodynamic analysis of reservoir architecture employing seismic analysis and wellbore imaging and petrophysical logging concludes the same. All other PVT and geochemical data are compatible with this assessment; nevertheless, the DFA-measured asphaltene gradients are shown to be superior to all other fluid measurements to determine reservoir architecture. The concurrence of high-resolution seismic imaging with advanced wireline for both formation and reservoir fluid geodynamics enables building robust geologic models populated with the accurate fluid structures of the reservoir. History matching months of production match most probable reservoir realizations which are now the basis of reservoir simulation. Future exploration with step-out wells are being optimized with this powerful workflow.
Reservoir fluid geodynamics (RFG) has recently been launched as a formal technical arena that accounts for fluid redistributions and tar formation in reservoirs largely after trap filling. Elements of RFG, such as analysis of biodegradation, have long been in place; nevertheless, RFG is now strongly enabled by recent developments: 1) downhole fluid analysis (DFA) allows routine elucidation of reservoir fluid gradients, 2) the development of the first equation of state for asphaltene gradients allows identification of equilibrium vs. geodynamic processes of reservoir fluids and 3) RFG analyses of 35 oilfields systematize a multitude of RFG processes and show their direct impact on wide-ranging production concerns. Thermodynamic analyses identifying reservoir fluid geodynamic processes rely heavily on measurement of fluid gradients to avoid ambiguous interpretations. The unique role of asphaltene gradients and their integration with other data streams are the focus herein. RFG oilfield studies have repeatedly shown that analyses of asphaltene gradients are critical to proper evaluation of RFG processes. Naturally, any reservoir concern that directly involves asphaltenes such as heavy oil, viscosity gradients, asphaltene onset pressure, bitumen deposition, tar mat formation, and indirectly, GOR gradients are strongly dependent on asphaltene gradients. Moreover, as shown in numerous case studies herein, asphaltene gradients can be measured with accuracy and the corresponding thermodynamic analyses allow explicit identification of RFG processes not traditionally associated with asphaltenes, such as analysis of connectivity, fault block migration, baffling, spill-fill mechanisms and many others discussed below. In turn, these processes imply other corroborative reservoir and fluid properties that can then be confirmed. Crude oil chemical compositional data, such as ultrahigh resolution two-dimensional gas chromatography, combined with geochemical interpretation, is highly desirable for understanding RFG processes. Nevertheless, biomarkers and other fluid properties often exhibit small gradients relative to standard deviations (except with biodegradation) but often can still corroborate specific RFG processes. In general, integration of fluid gradient analysis with other data streams including petrophysics, core analysis, stratigraphy, geology and geophysics is critical; nevertheless, which integration is most needed depends on particular reservoir attributes and RFG processes that are in question. Examples of data integration are shown for ten reservoirs undergoing various fluid geodynamic processes. Asphaltene gradient analysis is relatively new, yet it is essential for characterization of RFG processes.
Fluid geodynamics processes can alter the hydrocarbon accumulation in the reservoir and complicate the fluid distribution. The processes can be one or combination of late gas charging, biodegradation, water washing, spill-fill charging etc. Fault block migration is another geological process can take place after fluid charging, which results in the fluid re-distribution and brings extra challenges for reservoir evaluation. The understanding and evolution of the fluid geodynamics and fault block migration processes become the key to reveal reservoir connectivity, reservoir charging and geological structural evolution. This paper elaborates a case study from a Talos Energy's discovery in deep-water Gulf of Mexico, Tornado field from Pliocene formation, to illustrate the connectivity analysis cooperating fault block migration and fluid geodynamics. The high-quality seismic imaging delineated the sand bodies in the reservoir with a gross pay of 400 feet. The two wellbores in the main block A and one wellbore in adjacent block C all exhibit two primary stacked sands separated by an intervening shale break. The RFG (Reservoir Fluid Geodynamics) workflow was applied to this field for connectivity analysis, with integration of the advanced DFA (Downhole Fluid Analysis) data from wireline formation testing, advanced analytical and geochemical analysis of the oil, laboratory PVT and fluid inclusion testing data. The advanced DFA data includes fluid color (asphaltene), composition, Gas-Oil-Ratio (GOR), density, viscosity, and fluorescence yield to help assess connectivity in real-time and after laboratory analysis, which helped to optimize data acquisition and allow the early completion decisions. The DFA data was analyzed using the Flory-Huggins-Zuo Equation of State for asphaltene gradients and the Cubic Equation of State for GOR gradients. The resulting DFA-RFG analysis shows that in the main block A, the fluids in the upper and lower sands are separately equilibrated, in spite of the young age of the reservoir, indicating there is good lateral connectivity in each sand. The asphaltene content of the oil in the upper sand is slightly, yet significantly smaller, than that in the lower sand indicating that the intervening shale might be a laterally extensive baffle or possibly a barrier. Subtleties in the DFA data are more consistent with the shale being a baffle. Moreover, the biomarker analysis shows that all oils encountered are indistinguishable from a petroleum system perspective. This reinforces the DFA-RFG interpretation. However, seismic imaging shows that the intervening shale is not present at the half lower section of the reservoir. With guidance from RFG connectivity analysis, it is consistent with the geology understanding that the shale becomes thinner which beyond the seismic resolution. The paleo flow analysis based on high definition borehole images integrated with seismic interpretation confirmed that upper sand scoured away the intervening shale. The deposition modeling supports that the shale is a baffle. The sands from the well in the adjacent block C show a vertical shift of asphaltene distribution from block A. The extent of the 360feet vertical offset matches the fault throw from seismic imaging and from log correlation. The fluid properties including asphaltene content, API gravity, methane carbon isotope, GOR, density, are all consistent with the fault block migration scenario. A further complexity is that the upper fault block received a subsequent charge of primary biogenic gas after fault throw. This innovated approach provides guidelines for geophysical and geological interpretation regarding fault block migration and the hydrocarbon charging sequence. The field connectivity conclusions have been confirmed by over 1-year of production history to date.
This paper was selected for presentation by an SPE Prcgram Committee following review of information contained in an abstract submitt~by the author(s), Conten& of the paper, as presented, have not ken revie~d by the~iety of Petroleum Engineers and are subject to correction by the author(s), The material, as presented, does not necessarily reflect any psition of the~iety of Pe!roleum Engineers, ita officers, or membara. Papem presented at SPE meetings are subject b publication review by Edtorial timm%tees of the tiety of PetileumEngineers. Electronic reprdution, distribution, or storage& any part of this paper for commercial pupses tithout the written ccmsent of the Wety of Petroleum Engineers is prohibit~. Permission to reproduce in print is restrictd ta an abstract& not more than 300 wrd~illustrations may not be copied. The abstract must mntain conspicuous acknowledgment of where and by whom the paper was presented, Wdte Librarian, SPE, P.0, kx 833S36, Richardson, TX 75083-=, U. S, A,, fax 01 .972.g52-9435, Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.