Accurate knowledge on spatiotemporal distributions of marine species and their association with surrounding habitats is crucial to inform adaptive management actions responding to coastal degradation across the globe. Here, we investigate the potential use of environmental DNA (eDNA) to detect species–habitat associations in a patchy coastal area of the Baltic Sea. We directly compare species‐specific qPCR analysis of eDNA with baited remote underwater video systems (BRUVS), two non‐invasive methods widely used to monitor marine habitats. Four focal species (cod Gadus morhua, flounder Platichthys flesus, plaice Pleuronectes platessa, and goldsinny wrasse Ctenolabrus rupestris) were selected based on contrasting habitat associations (reef‐ vs. sand‐associated species), as well as differential levels of mobility and residency, to investigate whether these factors affected the detection of species–habitat associations from eDNA. To this end, a species‐specific qPCR assay for goldsinny wrasse is developed and made available herein. In addition, potential correlations between eDNA signals and abundance counts (MaxN) from videos were assessed. Results from Bayesian multilevel models revealed strong evidence for a sand association for sedentary flounder (98% posterior probability) and a reef association for highly resident wrasse (99% posterior probability) using eDNA, in agreement with BRUVS. However, contrary to BRUVS, eDNA sampling did not detect habitat associations for cod or plaice. We found a positive correlation between eDNA detection and MaxN for wrasse (posterior probability 95%), but not for the remaining species and explanatory power of all relationships was generally limited. Our results indicate that eDNA sampling can detect species–habitat associations on a fine spatial scale, yet this ability likely depends on the mobility and residency of the target organism, with associations for sedentary or resident species most likely to be detected. Combined sampling with conventional non‐invasive methods is advised to improve detection of habitat associations for mobile and transient species, or for species with low eDNA concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.