Abstract. The beach-ridge sequence of the Usumacinta-Grijalva delta borders a 300-km-long section of the Southern Mexico Gulf coast. With around 500 beach ridges formed in the last 6500 years, the sequence is unsurpassed in the world in terms of numbers of individual ridges preserved, continuity of the record, and temporal resolution. We mapped and dated the most extensively accreted part of the sequence, linking six phases of accretion to river-mouth reconfigurations and constraining their ages with 14C and OSL dating. The geomorphological and sedimentological reconstruction relied on LiDAR data, coring transects, GPR measurements, grain-size analyses and chemical fingerprinting of volcanic glass and pumice encountered within the beach and dune deposits. We demonstrate that the beach-ridge complex was formed under ample long-term fluvial sediment supply and shorter-term wave- and aeolian modulated sediment reworking. The abundance of fluvially supplied sand is explained by the presence of easily weatherable Los Chocoyos ignimbrites from the ca. 84 ka eruption of Atitlán volcano (Guatemala) in the catchment of the Usumacinta River. Autocyclic processes seem responsible for the formation of ridge/swale couplets. Fluctuations in their periodicity (ranging from 6–19 yrs) are governed by progradation rate, and are therefore not indicative of sea level fluctuations or variability in storm activity. The fine sandy beach ridges are mainly swash built. Ridge elevation, however, is strongly influenced by aeolian accretion during the time the ridge is located next to the beach. Beach-ridge elevation is negatively correlated with progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment. In the Southern Mexican delta plain, the coastal beach ridges therefore appear to be excellent recorders of hinterland precipitation.
The Uddelermeer is a unique lake for The Netherlands, containing a sediment record that continuously registered environmental and climatic change from the late Pleistocene on to the present. A 15.6-m-long sediment record was retrieved from the deepest part of the sedimentary basin and an age-depth model was developed using radiocarbon dating, 210 Pb dating, and Bayesian modeling. Lake-level change was reconstructed using a novel combination of high-resolution palaeoecological proxies (e.g. pollen, non-pollen palynomorphs, chironomids), quantitative determinations of lake-level change (ground-penetrating radar), and estimates of changes in precipitation (lipid biomarker stable isotopes). We conclude that lake levels were at least as high as present-day water levels from the late glacial to 3150 cal. yr BP, with the exception of at least one lake-level lowstand during the Preboreal period. Lake levels were ca. 2.5 m lower than at present between 3150 and 2800 cal. yr BP, which might have been the result of a change in moisture source region prior to the so-called 2.8-kyr event. Increasing precipitation amounts around 2800 cal. yr BP resulted in a lake-level rise of about 3.5-4 m to levels that were 1-1.5 m higher than at present, in line with increased precipitation levels as inferred for the 2.8-kyr event from nearby raised bog areas as well as with reconstructions of higher lake levels in the French Alps, all of which have been previously attributed to a phase of decreased solar activity. Lake levels decreased to their present level only during recent times, although the exact timing of the drop in lake levels is unclear.
Abstract. The beach-ridge sequence of the Usumacinta-Grijalva delta borders a 300 km long section of the southern Gulf of Mexico coast. With around 500 beach ridges formed in the last 6500 years, the sequence is unsurpassed in the world in terms of numbers of individual ridges preserved, continuity of the record, and temporal resolution. We mapped and dated the most extensively accreted part of the sequence, linking six phases of accretion to river mouth reconfigurations and constraining their ages with 14 C and OSL dating. The geomorphological and sedimentological reconstruction relied on lidar data, coring transects, GPR measurements, grain-size analyses, and chemical fingerprinting of volcanic glass and pumice encountered within the beach and dune deposits.We demonstrate that the beach-ridge complex was formed under ample long-term fluvial sediment supply and shorter-term wave-and aeolian-modulated sediment reworking. The abundance of fluvially supplied sand is explained by the presence of easily weatherable Los Chocoyos ignimbrites from the ca. 84 ka eruption of the Atitlán volcano (Guatemala) in the catchment of the Usumacinta River. Autocyclic processes seem responsible for the formation of ridge-swale couplets. Fluctuations in their periodicity (ranging from 6-19 years) are governed by progradation rate, and are therefore not indicative of sea level fluctuations or variability in storm activity. The fine sandy beach ridges are mainly swash built. Ridge elevation, however, is strongly influenced by aeolian accretion during the time the ridge is located next to the beach. Beach-ridge elevation is negatively correlated with progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment. In the southern Mexican delta plain, the coastal beach ridges therefore appear to be excellent recorders of hinterland precipitation.
A remarkably long period of Northern Hemispheric cooling in the 6 th century CE, which disrupted human societies across large parts of the globe, has been attributed to volcanic forcing of climate. A major tropical eruption in 540 CE is thought to have played a key role, but there is no consensus about the source volcano to date. Here, we present evidence for El Chichón in southern Mexico as the most likely candidate, based on a refined reconstruction of the volcano's eruption history. A new chronological framework, derived from distal tephra deposits and the world's largest Holocene beach ridge plain along the Gulf of Mexico, enabled us to positively link a major explosive event to a prominent volcanic sulfur spike in bipolar ice core records, dated at 540 CE. We speculate that voluminous tephra fall from the eruption had a severe environmental impact on Maya societies, leading to temporary cultural decline, site abandonment, and migration within the core area of Maya civilization.
<p>River embankments form an essential part of the primary flood defence in the Netherlands. Of all failure mechanisms, piping is considered one of the key mechanism for triggering dike destabilization of river dikes in Rhine-Meuse Delta. Within the STW project Piping in practice, we aim to better understand 1) the influence of variability within subsurface characteristics on the piping process, and 2) the natural variability of these subsurface characteristics underneath embankments in the Rhine-Meuse delta. &#160; <br>We employ the lithogenesis of sandy deposits to group variability in subsurface parameters across different scales. Using extensive borehole datasets, we quantified regional trends within and between geological units in order to investigate geological controls on variability these subsurface properties. On a smaller scale, laboratory experiments have shown that larger variation in grain size or layering in porous media have a retarding effect on the progression of small-scale pipes, demonstrating the importance of incorporating these variabilities into the piping assessments. &#160;Combining laboratory experiments and field observations, representative sedimentary architectures are implemented into digital piping models at several embedded scales. This will allow us to better describe subsurface variability in terms of model parameters, and improve computation of the piping process.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.