The nature of the adhesive greatly influences the resultant bond strength, the risk of enamel damage, and the extent of residual composite on the teeth.
High bond strengths are required in order to avoid bracket failure during treatment while brackets should be removable. In addition, chair time should be kept at a minimum. Therefore, the aim of this study was to investigate any differences in bracket's bond strength to enamel by reducing the polymerization time and the steps of bonding procedure. Five hundred teeth were randomly allocated into 20 groups. The groups were established considering the investigated curing units (quartz-tungsten-halogen (QTH) and light-emitting diode (LED), each with two different polymerization times) and the used bonding agents (Clearfil SE Bond, Transbond Plus, Ideal1, iBond, and Transbond XT Primer following acid etching). The brackets were debonded using a shear-peel load and used to calculate the bond strength. The location of adhesive failure was registered by using the modified adhesive remnant index (ARI). The influence of the parameters curing unit, curing time, and bonding agent as well as their interaction products on bond strength showed that the bonding agent influenced the bond strength most followed by curing time. The parameter curing unit as well as all the generated interaction products of it showed a lower impact. Regarding the ARI, the bonding agent exhibited also the highest influence. Using a LED resulted in comparable bond strengths as the QTH curing device also at shorter exposure times. Additionally, the two-component self-etching primers showed similar bond strengths compared to the acid-etching method. Chair time can be reduced by using two-component self-etching primers and LED without decrease of bond strength.
Objectives: The testing of new materials under simulation of oral conditions is essential in medicine. For simulation of fracture strength different simulation devices are used for test set-up. The results of these in vitro tests differ because there is no standardization of tooth mobility in simulation devices. The aim of this study is to develop a simulation device that depicts the tooth mobility curve as accurately as possible and creates reproducible and scalable mobility curves. Materials and methods: With the aid of published literature and with the help of dentists, average forms of tooth classes were generated. Based on these tooth data, different abutment tooth shapes and different simulation devices were designed with a CAD system and were generated with a Rapid Prototyping system. Then, for all simulation devices the displacement curves were created with a universal testing machine and compared with the tooth mobility curve. With this new information, an improved adapted simulation device was constructed. Results: A simulations device that is able to simulate the mobility curve of natural teeth with high accuracy and where mobility is reproducible and scalable was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.