Background:The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement organ with compatible living donors. Ideally many medical institutions should participate in a matching program to increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements for highly sensitive personal health information while simultaneously reducing the regulatory burdens. Results:We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP which computes a solution by finding matching donor-recipient pairs in a graph structure. SPIKE matches 40 pairs in cycles of length 2 in less than 4 minutes and outperforms the previous state-of-the-art protocol by a factor of 400× in runtime while providing medically more robust solutions. Conclusions:We show how to solve the KEP in a robust and privacy-preserving manner achieving practical performance. The usage of MPC techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to directly participate in a kidney exchange with reduced legal processes.
Background The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement organ with compatible living donors. Ideally many medical institutions should participate in a matching program to increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements for highly sensitive personal health information while simultaneously reducing the regulatory burdens. Results We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP protocol which computes a locally optimal solution by finding matching donor–recipient pairs in a graph structure. SPIKE matches 40 pairs in cycles of length 2 in less than 4 min and outperforms the previous state-of-the-art protocol by a factor of $$400\times$$ 400 × in runtime while providing medically more robust solutions. Conclusions We show how to solve the KEP in a robust and privacy-preserving manner achieving significantly more practical performance than the current state-of-the-art (Breuer et al., WPES’20 and CODASPY’22). The usage of MPC techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to directly participate in a kidney exchange with reduced legal processes. As sensitive data are not leaving the institutions’ network boundaries, the patient data underlie a higher level of protection than in the currently employed (centralized) systems. Furthermore, due to reduced legal barriers, the proposed decentralized system might be simpler to implement in a transnational, intereuropean setting with mixed (national) data protecion laws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.