Low noise emissions of vehicle components are today a quality feature in the automotive sector. In automatic transmissions in particular, the hydraulic pump often contributes significantly to noise, which motivates research to clarify the noise sources and transmission pathways in these components. The subject of the present investigation is the generation of noise by the inherently instationary flow in hydraulic pumps. In order to shed some light on these phenomena, a computational fluid dynamics (CFD) simulation model for flow investigations on rotary vane pumps was set up. In this work, first the influence of different simulation parameters on the numerical results is analyzed. Then the pressure in the internal displacement chambers of the pump is examined, as it can be assumed that this is the essential parameter for noise generation. Different operating conditions such as rotational speeds and delivery pressures are investigated. Furthermore, the simulation results are compared to pressure measurements for validation and are used to find optimization potentials.
Vane pumps are often applied in automatic transmission systems of vehicles. Future applications require the oil pumps to be more efficient and to be able to handle multiphase flow pumping situations to a certain extend. To fulfill these requirements, efficient development tools are needed. Therefore, a less demanding computational 2D model of a fixed-type balanced vane pump was derived and numerically analyzed with the commercial computational fluid dynamics (CFD) software ANSYS CFX. The meshing of the rotating parts was done with TwinMesh, using a moving mesh approach. At first, a mesh convergence study was performed. It was shown that the resolution of the radial clearances in particular had a significant influence on the predicted leakages and the volumetric efficiency. The leakage was further investigated concerning the dependence on rotational speed and delivery pressure. In the next step, multiphase flows were considered. In a first setup, vapor cavitation was analyzed and the influence of the alignment of the suction ports on its onset was derived. In a second setup, the influence of different inlet volume fractions of free air was evaluated. The employed multiphase modeling approach was presented and a sensitivity analysis on modeling parameters was performed. Overall, it was shown that free air in the suction ports changed the pumping characteristic of the vane pump significantly. Pressure and flow ripple increased, and the volumetric efficiency and the mean power demand decreased significantly with an increasing inlet volume fraction.
The rising demand for lower noise emissions of car ancillary units due to electrification and higher customer expectations regarding driving comfort results in the need for more silent car components. Hydraulic driven car components in particular are often identified as a major source of noise in the system. Therefore, it is mandatory to investigate the noise sources inside the hydraulic system. In this work, a combined CFD-FEM approach is applied to estimate the flow-induced noise radiation of a mechanically driven transmission pump. To achieve this goal, the mapping procedure to hand over the pressure field from the CFD to the FEM mesh must be valid. For this purpose, the error during the mapping process is evaluated and different parameters, which influence the mapping results, are analyzed. Additionally, the impact of the time step size and the length of the time signal on the frequency resolution of the force signal is investigated to get an appropriate excitation force for the vibroacoustic simulation. Subsequently, a force analysis and a structural FEM simulation are performed to identify which flow phenomenon contributes most to the excitation of the pump housing. Specific locations in the pump with high loads are pointed out. In a final step, the results of the vibroacoustic model are compared to acceleration and sound pressure level measurements of the pump performed in a hemi-anechoic room.
The efficiency requirements for hydraulic pumps applied in automatic transmissions in future generations of automobiles will increase continuously. In addition, the pumps must be able to cope with multiphase flows to a certain extent. Given this background, a balanced vane pump (BVP), an internal gear pump (IGP) and a three-dimensional geared tumbling multi chamber (TMC) pump are analyzed and compared by a computational fluid dynamics (CFD) approach with ANSYS CFX and TwinMesh. Furthermore, test bench measurements are conducted to obtain experimental data to validate the numerical results. The obtained numerical results show a reasonable agreement with the experimental data. In the first CFD setup, the conveying characteristics of the pumps with pure oil regarding volumetric efficiencies, cavitation onset and pressure ripple are compared. Both the IGP and the BVP show high volumetric efficiencies and low pressure ripples whereas the TMC shows a weaker performance regarding these objectives. In the second CFD setup, an oil-bubbly air multiphase flow with different inlet volume fractions (IGVF) is investigated. It can be shown that free air changes the pumping characteristics significantly by increasing pressure and mass flow ripple and diminishing the volumetric efficiency as well as the required driving torque. The compression ratios of the pumps appear to be an important parameter that determines how the multiphase flow is handled regarding pressure and mass flow ripple. Overall, the BVP and the IGP show both a similar strong performance with and without free air. In the current development state, the TMC pump shows an inferior performance because of its lower compression ratio and therefore needs further optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.