Microblogging forums (e.g., Twitter) have become a vibrant online platform for exchanging stock‐related information. Using methods from computational linguistics, we analyse roughly 250,000 stock‐related messages (so‐called tweets) on a daily basis. We find an association between tweet sentiment and stock returns, message volume and trading volume, as well as disagreement and volatility. In contrast to previous related research, we also analyse the mechanism leading to an efficient aggregation of information in microblogging forums. Our results demonstrate that users providing above average investment advice are retweeted (i.e., quoted) more often and have more followers, which amplifies their share of voice.
Twitter is a microblogging website where users read and write millions of short messages on a variety of topics every day. This study uses the context of the German federal election to investigate whether Twitter is used as a forum for political deliberation and whether online messages on Twitter validly mirror offline political sentiment. Using LIWC text analysis software, we conducted a content-analysis of over 100,000 messages containing a reference to either a political party or a politician. Our results show that Twitter is indeed used extensively for political deliberation. We find that the mere number of messages mentioning a party reflects the election result. Moreover, joint mentions of two parties are in line with real world political ties and coalitions. An analysis of the tweets’ political sentiment demonstrates close correspondence to the parties' and politicians’ political positions indicating that the content of Twitter messages plausibly reflects the offline political landscape. We discuss the use of microblogging message content as a valid indicator of political sentiment and derive suggestions for further research.
This study presents a methodology for identifying a broad range of real-world news events based on microblogging messages. Applying computational linguistics to a unique dataset of more than 400,000 S&P 500 stock-related Twitter messages, we distinguish between good and bad news and demonstrate that the returns prior to good news events are more pronounced than for bad news events. We show that the stock market impact of news events differs substantially across different categories.
This study investigates whether microblogging messages on Twitter validly mirror the political landscape off-line and can be used to predict election results. In the context of the 2009 German federal election, we conducted a sentiment analysis of over 100,000 messages containing a reference to either a political party or a politician. Our results show that Twitter is used extensively for political deliberation and that the mere number of party mentions accurately reflects the election result. The tweets' sentiment (e.g., positive and negative emotions associated with a politician) corresponds closely to voters' political preferences. In addition, party sentiment profiles reflect the similarity of political positions between parties. We derive suggestions for further research and discuss the use of microblogging services to aggregate dispersed information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.