Many teams in the NHL utilize data analysis and employ data analysts. An important question for these analysts is to identify attributes and skills that may help predict the success of individual players. This study uses detailed player statistics from four seasons, player rankings from EA's NHL video games, and six machine learning algorithms to find predictive models that can be used to identify and predict players' ranking tier (top 10%, 25% and 50%). We also compare and contrast which attributes and skills best predict a player's success, while accounting for differences in player positions (goalkeepers, defenders and forwards). When comparing the resulting models, the Bayesian classifiers performed best and had the best sensitivity. The tree-based models had the highest specificity, but had trouble classifying the top 10% tier players. In general, the models were best at classifying forwards, highlighting that many of the official metrics are focused on the offensive measures and that it is harder to use official performance metrics alone to differentiate between top tier players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.