Computed Tomography (CT) reconstruction is a fundamental component to a wide variety of applications ranging from security, to healthcare. The classical techniques require measuring projections, called sinograms, from a full 180°view of the object. However, obtaining a full-view is not always feasible, such as when scanning irregular objects that limit flexibility of scanner rotation. The resulting limited angle sinograms are known to produce highly artifact-laden reconstructions with existing techniques. In this paper, we propose to address this problem using CTNet -a system of 1D and 2D convolutional neural networks, that operates directly on a limited angle sinogram to predict the reconstruction. We use the x-ray transform on this prediction to obtain a "completed" sinogram, as if it came from a full 180°view. We feed this to standard analytical and iterative reconstruction techniques to obtain the final reconstruction. We show with extensive experimentation on a challenging real world dataset that this combined strategy outperforms many competitive baselines. We also propose a measure of confidence for the reconstruction that enables a practitioner to gauge the reliability of a prediction made by CTNet. We show that this measure is a strong indicator of quality as measured by the PSNR, while not requiring ground truth at test time. Finally, using a segmentation experiment, we show that our reconstruction also preserves the 3D structure of objects better than existing solutions.
Early detection of lung nodules is currently the one of the most effective ways to predict and treat lung cancer. As a result, the past decade has seen a lot of focus on computer aided diagnosis (CAD) of lung nodules, whose goal is to efficiently detect, segment lung nodules and classify them as being benign or malignant. Effective detection of such nodules remains a challenge due to their arbitrariness in shape, size and texture. In this paper, we propose to employ 3D convolutional neural networks (CNN) to learn highly discriminative features for nodule detection in lieu of hand-engineered ones such as geometric shape or texture. While 3D CNNs are promising tools to model the spatio-temporal statistics of data, they are limited by their need for detailed 3D labels, which can be prohibitively expensive when compared obtaining 2D labels. Existing CAD methods rely on obtaining detailed labels for lung nodules, to train models, which is also unrealistic and time consuming. To alleviate this challenge, we propose a solution wherein the expert needs to provide only a point label, i.e., the central pixel of of the nodule, and its largest expected size. We use unsupervised segmentation to grow out a 3D region, which is used to train the CNN. Using experiments on the SPIE-LUNGx dataset, we show that the network trained using these weak labels can produce reasonably low false positive rates with a high sensitivity, even in the absence of accurate 3D labels.
Current-day cross-cultural psychology typically attends to a linguistic equivalence requirement for the assessment of one and the same psychological construct in different cultures. The present article suggests loosening the requirement of using identically worded items in all cultures included in a cross-cultural comparison in favor of following a more emic methodology in instrument development. Using purely illustrative material on the relationship of paternal warmth and trust in five cultures (Germany, Moldova–Russian, Togo–French, Zambia–English, and Zimbabwe–Shona), an approach is suggested that develops items autonomously within the cultures included in a comparison, subsequently ascertains structural and measurement equivalence of covariance matrices obtained on the basis of items differently worded in different cultures, and finally validates the measurement by showing the equality of the relationship of the differentially measured latent construct under scrutiny (here, paternal warmth) with the comparison variable (here, trust) in all cultures. The authors hope to offer first steps toward a quantitative emic comparative psychology and discuss further research needs.
Solving inverse problems continues to be a challenge in a wide array of applications ranging from deblurring, image inpainting, source separation etc. Most existing techniques solve such inverse problems by either explicitly or implicitly finding the inverse of the model. The former class of techniques require explicit knowledge of the measurement process which can be unrealistic, and rely on strong analytical regularizers to constrain the solution space, which often do not generalize well. The latter approaches have had remarkable success in part due to deep learning, but require a large collection of source-observation pairs, which can be prohibitively expensive. In this paper, we propose an unsupervised technique to solve inverse problems with generative adversarial networks (GANs). Using a pre-trained GAN in the space of source signals, we show that one can reliably recover solutions to under determined problems in a 'blind' fashion, i.e., without knowledge of the measurement process. We solve this by making successive estimates on the model and the solution in an iterative fashion. We show promising results in three challenging applications -blind source separation, image deblurring, and recovering an image from its edge map, and perform better than several baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.