The sterically hindered benzamidinate ligand [PhC(NAr) 2 ] -(Ar = 2,6-iPr 2 C 6 H 3 ) has been employed to prepare bis(amidinate) complexes [{PhC(NAr) 2 } 2 M] of the divalent first-row transition metals Cr-Ni (1-5). For Cr (planar), Mn and Co (tetrahedral) the observed structures follow the electronic preference for the metal ion in its highest spin multiplicity, as determined by DFT calculations. Remarkably, the Fe derivative adopts a distorted planar structure while retaining the high-spin (S = 2) configuration. This rare combination is
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The effect a Co(II) based catalytic chain transfer agent (CCTA) has on the course of the polymerization and the product properties of an emulsion polymerization is governed by the intrinsic activity and the partitioning behavior of the catalyst. The effect on the conversion time history, the molecular weight distribution and the particle size distribution is evaluated in batch emulsion polymerization of methyl methacrylate for three different CCTAs, which cover a range of intrinsic activities and partitioning behaviors. It was demonstrated that radical desorption from the particle phase to the aqueous phase preceded by chain transfer is the main kinetic event controlling the course of the polymerization and the product properties in terms of the particle size distribution. The experimental results show that the aqueous phase solubility of the CCTA is the key parameter controlling the course of the polymerization and the particle size distribution.
The use of the chelating diboranes o-C6F4[B(C6F5)2]2 (1) and o-C6F4(9-BC12F8)2 (2: 9-BC12F8 = 1,2,3,4,5,6,7,8-octafluoro-9-borafluorene) for the polymerization of isobutene (IB) in aqueous suspension or in hydrocarbon solution was studied. Polymerizations in aqueous suspension provided polymer of moderate MW and at variable conversion and were dependent on temperature, mode of diborane addition, the presence of surfactant, and the acidity of and nature of the anion present in the aqueous phase. The T dependence of MW over the T range −80 to −20 °C was studied in aqueous suspension, and higher MW polymer was formed at lower T. The hydrolysis and methanolysis of diboranes 1 and 2 was studied by NMR spectroscopy. Reactions of diborane 1 with excess MeOH or water afford solutions containing oxonium acids [o-C6F4{B(C6F5)2}2(μ-OR)][(ROH)
n
H] (7: R = H, n > 2; 3: R = Me, n = 3). When diborane 1 is present in excess over water or MeOH, degradation of the diborane is observed. In this case the products are o-C6F4{B(C6F5)2}H (5) and (C6F5)2BOH 7 or (C6F5)2BOMe 4, respectively. In the case of diborole 2, o-C6F4(9-BC12F8)B(2-C12F8-2′′-H)(μ-OH)·7H2O (17) and o-C6F4(9-BC12F8)B(2-C12F8-2′′-H)(μ-OMe) (11) were isolated from reactions of 2 with water and MeOH, respectively, and were characterized by X-ray crystallography. None of these degradation products effect IB polymerization in aqueous suspension. As a model for initiation of polymerization, the reaction of diborole 2 with 1,1-diphenylethylene (DPE) was studied. Addition of MeOH at low T results in efficient formation of the ion-pair [Ph2CMe][o-C6F4(9-BC12F8)2(μ-OMe)] via protonation of DPE. Polymerizations in hydrocarbon media were exothermic and rapid and gave quantitative yields of polymer even at very low concentrations of diborane 1. The T dependence of MW was studied in hydrocarbon solution and showed non-Arrhenius behavior. This was explained by competitive chain transfer to monomer at elevated T and chain transfer to molecular water at lower T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.