An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 2-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to the other ones. We provide a characterization of the discrete planes with critical thickness that have zero intercept and that are 2-connected. Our tools rely on the notion of dual substitution which is a geometric version of the usual notion of substitution acting on words. We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix is provided by the matrices of the algorithm, and prove that their geometric counterparts generate arithmetic discrete planes.
We study the decidability of the topological properties of some objects coming from fractal geometry. We prove that having empty interior is undecidable for the sets defined by two-dimensional graph-directed iterated function systems. These results are obtained by studying a particular class of self-affine sets associated with multi-tape automata. We first establish the undecidability of some language-theoretical properties of such automata, which then translate into undecidability results about their associated self-affine sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.