Summary
Human induced pluripotent stem cells (hiPSCs) allow
in vitro
study of genetic diseases and hold potential for personalized stem cell therapy. Gene editing, precisely modifying specifically targeted loci, represents a valuable tool for different hiPSC applications. This is especially useful in monogenic diseases to dissect the function of unknown mutations or to create genetically corrected, patient-derived hiPSCs. Here we describe a highly efficient method for simultaneous base editing and reprogramming of fibroblasts employing a CRISPR-Cas9 adenine base editor. As a proof of concept, we apply this approach to generate gene-edited hiPSCs from skin biopsies of four patients carrying a Finnish-founder pathogenic point mutation in either
NOTCH3
or
LDLR
genes. We also show LDLR activity restoration after the gene correction. Overall, this method yields tens of gene-edited hiPSC monoclonal lines with unprecedented efficiency and robustness while considerably reducing the cell culture time and thus the risk for
in vitro
alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.