In this paper we study consensus-based optimization (CBO), which is a metaheuristic derivative-free optimization method that can globally minimize nonconvex nonsmooth functions and is amenable to theoretical analysis. Based on an experimentally supported intuition that CBO performs a gradient descent on the convex envelope of a given objective, we derive a novel technique for proving the convergence to the global minimizer in mean-field law for a rich class of objective functions. Our results unveil internal mechanisms of CBO that are responsible for the success of the method. Furthermore, we improve prior analyses by requiring minimal assumptions about the initialization of the method and by covering objectives that are merely locally Lipschitz continuous. As a by-product of our analysis, we establish a quantitative nonasymptotic Laplace principle, which may be of independent interest.
For many algorithms, parameter tuning remains a challenging and critical task, which becomes tedious and infeasible in a multi-parameter setting. Multi-penalty regularization, successfully used for solving undetermined sparse regression of problems of unmixing type where signal and noise are additively mixed, is one of such examples. In this paper, we propose a novel algorithmic framework for an adaptive parameter choice in multi-penalty regularization with a focus on the correct support recovery. Building upon the theory of regularization paths and algorithms for single-penalty functionals, we extend these ideas to a multi-penalty framework by providing an efficient procedure for the construction of regions containing structurally similar solutions, i.e., solutions with the same sparsity and sign pattern, over the whole range of parameters. Combining this with a model selection criterion, we can choose regularization parameters in a data-adaptive manner. Another advantage of our algorithm is that it provides an overview on the solution stability over the whole range of parameters. This can be further exploited to obtain additional insights into the problem of interest. We provide a numerical analysis of our method and compare it to the state-of-the-art single-penalty algorithms for compressed sensing problems in order to demonstrate the robustness and power of the proposed algorithm.
We study the accuracy of estimating the covariance and the precision matrix of a D-variate sub-Gaussian distribution along a prescribed subspace or direction using the finite sample covariance. Our results show that the estimation accuracy depends almost exclusively on the components of the distribution that correspond to desired subspaces or directions. This is relevant and important for problems where the behavior of data along a lower-dimensional space is of specific interest, such as dimension reduction or structured regression problems. We also show that estimation of precision matrices is almost independent of the condition number of the covariance matrix. The presented applications include direction-sensitive eigenspace perturbation bounds, relative bounds for the smallest eigenvalue, and the estimation of the single-index model. For the latter, a new estimator, derived from the analysis, with strong theoretical guarantees and superior numerical performance is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.