Saccharomyces cerevisiae harbors a family of GPI-anchored cell wall proteins for interaction with its environment. The flocculin Flo11, a major representative of these fungal adhesins, confers formation of different types of multicellular structures such as biofilms, flors, or filaments. To understand these environment-dependent growth phenotypes on a molecular level, we solved the crystal structure of the N-terminal Flo11A domain at 0.89-Å resolution. Besides a hydrophobic apical region, the Flo11A domain consists of a β sandwich of the fibronectin type III domain (FN3). We further show that homophilic Flo11-Flo11 interactions and heterophilic Flo11-plastic interactions solely depend on the Flo11A domain and are strongly pH dependent. These functions of Flo11A involve an apical region with its surface-exposed aromatic band, which is accompanied by acidic stretches. Together with electron microscopic reconstructions of yeast cell-cell contact sites, our data suggest that Flo11 acts as a spacer-like, pH-sensitive adhesin that resembles a membrane-tethered hydrophobin.
Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms. We find that Flo11A domains from diverse yeast species confer remarkably strong adhesion forces by establishing homotypic interactions between single cells, leading to efficient cell aggregation and biofilm formation in homogenous populations. Heterotypic interactions between Flo11A domains from different yeast species or Saccharomyces cerevisiae strains confer weak adhesive forces and lead to efficient strain segregation in heterogenous populations, indicating that in social yeasts Flo11A-mediated cell adhesion is a major mechanism for kin discrimination at species and sub-species levels. These findings, together with our structure and mutation analysis of selected Flo11A domains, provide a rationale of how cell surface receptors have evolved in microorganisms to mediate kin discrimination.
a b s t r a c tSiderophores play an essential role in a multitude of microbial iron acquisition pathways. Many bacteria use xenosiderophores as iron sources that are produced by different microbial species in their habitat. We investigated the capacity of xenosiderophore uptake in the soil bacterium Bacillus subtilis and found that it employs several substrate binding proteins with high specificities and affinities for different ferric siderophore species. Protein-ligand interaction studies revealed dissociation constants in the low nanomolar range, while the protein folding stabilities were remarkably increased by their high-affinity ligands. Complementary growth studies confirmed the specificity of xenosiderophore uptake in B. subtilis and showed that its fitness is strongly enhanced by the extensive utilization of non-endogenous siderophores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.