Respiratory rate (RR) is typically the first vital sign to change when a patient decompensates. Despite this, RR is often monitored infrequently and inaccurately. The Circadia Contactless Breathing Monitor™ (model C100) is a novel device that uses ultra-wideband radar to monitor RR continuously and un-obtrusively. Performance of the Circadia Monitor was assessed by direct comparison to manually scored reference data. Data were collected across a range of clinical and non-clinical settings, considering a broad range of user characteristics and use cases, in a total of 50 subjects. Bland–Altman analysis showed high agreement with the gold standard reference for all study data, and agreement fell within the predefined acceptance criteria of ±5 breaths per minute (BrPM). The 95% limits of agreement were −3.0 to 1.3 BrPM for a nonprobability sample of subjects while awake, −2.3 to 1.7 BrPM for a clinical sample of subjects while asleep, and −1.2 to 0.7 BrPM for a sample of healthy subjects while asleep. Accuracy rate, using an error margin of ±2 BrPM, was found to be 90% or higher. Results demonstrate that the Circadia Monitor can effectively and efficiently be used for accurate spot measurements and continuous bedside monitoring of RR in low acuity settings, such as the nursing home or hospital ward, or for remote patient monitoring.
Coherent ultra-wideband (UWB) radar-on-chip technology shows great promise for developing portable and low-cost medical imaging and monitoring devices. Particularly monitoring the mechanical functioning of the cardiovascular system is of interest, due to the ability of radar systems to track sub-mm motion inside the body at a high speed. For imaging applications, UWB radar systems are required, but there are still significant challenges with in-body sensing using lowpower microwave equipment and wideband signals. Recently it was shown for the first time, on a single subject, that the arterial pulse wave can be measured at various locations in the body, using coherent UWB radar-on-chip technology. The current work provides more substantial evidence, in the form of new measurements and improved methods, to demonstrate that cardiovascular dynamics can be measured using radar-on-chip. Results across four participants were found to be robust and repeatable. Cardiovascular signals were recorded using radaron-chip systems and electrocardiography (ECG). Through ECGaligned averaging, the arterial pulse wave could be measured at a number of locations in the body. Pulse arrival time could be determined with high precision, and blood pressure pulse wave propagation through different arteries was demonstrated. In addition, cardiac dynamics were measured from the chest. This work serves as a first step in developing a portable and low-cost device for long-term monitoring of the cardiovascular system, and provides the fundamentals necessary for developing UWB radar-on-chip imaging systems.
Heart rate variability (HRV), as measured by ultra-wideband (UWB) radar, enables contactless monitoring of physiological functioning in the human body. In the current study, we verified the reliability of HRV extraction from radar data, under limited transmitter power. In addition, we conducted a feasibility study of mental state classification from HRV data, measured using radar. Specifically, arctangent demodulation with calibration and low rank approximation have been used for radar signal pre-processing. An adaptive continuous wavelet filter and moving average filter were utilized for HRV extraction. For the mental state classification task, performance of support vector machine, k-nearest neighbors and random forest classifiers have been compared. The developed system has been validated on human participants, with 10 participants for HRV extraction, and three participants for the proof-of-concept mental state classification study. The results of HRV extraction demonstrate the reliability of time-domain parameter extraction from radar data. However, frequencydomain HRV parameters proved to be unreliable under low SNR. The best average overall mental state classification accuracy achieved was 82.34%, which has important implications for the feasibility of mental health monitoring using UWB radar.
Abstract-Microwave imaging is a promising new modality for studying brain function. In the current paper we assess the feasibility of using a single chip implementation of an ultrawideband impulse radar for developing a portable and low-cost functional neuroimaging device. A numerical model is used to predict the level of attenuation that will occur when detecting a volume of blood in the cerebral cortex. A phantom liquid is made, to study the radar's performance at different attenuation levels. Although the radar is currently capable of detecting a point reflector in a phantom liquid with submillimeter accuracy and high temporal resolution, object detection at the desired level of attenuation remains a challenge.
Microwave imaging has been investigated for medical applications such as stroke and breast imaging. Current systems typically rely on benchtop equipment to scan at a variety of antenna positions. For dynamic imaging of moving structures, such as the cardiovascular system, much higher imaging speeds are required than what has thus far been reported. Recent innovations in radar-on-chip technology allow for simultaneous high speed data collection at multiple antenna positions at a fraction of the cost of conventional microwave equipment, in a small and potentially portable system. The objective of the current work is to provide proof of concept of dynamic microwave imaging in the body, using radar-on-chip technology. Methods: Arrays of body-coupled antennas were used with nine simultaneously operated coherent ultrawideband radar chips. Data were collected from the chest and thigh of a volunteer, with the objective of imaging the femoral artery and beating heart. In addition, data were collected from a phantom to validate system performance. Video data were constructed using beamforming. Results: The location of the femoral artery could successfully be resolved, and a distinct arterial pulse wave was discernable. Cardiac activity was imaged at locations corresponding to the heart, but image quality was insufficient to identify individual anatomical structures. Static and differential imaging of the femur bone proved unsuccessful. Conclusion: Using radar chip technology and an imaging approach, cardiovascular activity was detected in the body, demonstrating first steps towards biomedical dynamic microwave imaging. The current portable and modular system design was found unsuitable for static in-body imaging. Significance: This first proof of concept demonstrates that radar-on-chip could enable cardiovascular imaging in a low-cost, small and portable system. Such a system could make medical imaging more accessible, particularly in ambulatory or long-term monitoring settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.