Fundamentals of nanoprecipitation process to form colloidal lignin particles (CLPs) from tetrahydrofuran (THF)-water solvent system were studied, and applied in establishment of a robust reactor design for scaled-up CLP production. Spherical lignin particles with an average diameter of 220 nm could be produced by the new reactor design. Evaporation was applied for removal of THF, concentration of the CLP dispersions, and finally for drying of the CLPs into flake like dry form. The dried CLPs could be re-dispersed in water to restore their colloidal form by applying short physical agitation. Salt triggered sedimentation of the particles was also investigated as a way for reducing the energy consumption related to water evaporation from the CLP dispersions. Aqueous thermal post-treatments were demonstrated to yield structural reinforcement of the CLP structure against solvation in various lignin solvents. In summary, the presented work pushes forward the conceptual design of large-scale CLP production, and addresses some of the foreseen technical challenges.
Coating of colloidal lignin particles (CLPs), or lignin nanoparticles (LNPs), with proteins was investigated in order to establish a safe, self-assembly-mediated modification technique to tune their surface chemistry. Gelatin and poly-L-lysine formed the most pronounced protein corona on the CLP surface, as determined by dynamic light scattering (DLS) and zeta potential measurements. Spherical morphology of individual protein coated CLPs was confirmed by transmission electron (TEM) and atomic force (AFM) microscopy. A mechanistic adsorption study with several random coiled and globular model proteins was carried out using quartz crystal microbalance with dissipation monitoring (QCM-D). The three-dimensional (3D) protein fold structure and certain amino acid interactions were highly dependent on the protein adsorption on the lignin surface. The main driving forces of protein-lignin affinity were electrostatic, hydrophobic, and Van der Waals interactions, and hydrogen bonding. The relative contributions of these interactions were highly dependent on the ionic strength of the surrounding medium. Capillary electrophoresis (CE) and Fourier transform infrared spectroscopy (FTIR) provided further evidence about the adsorption-enhancing role of specific amino acid residues such as serine and proline. These results have high impact on the utilization of lignin as colloidal particles in 2 biomedicine and biodegradable materials, as the protein corona enables tailoring of the CLP surface chemistry for intended applications.
Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.e. spherical shape and size. Two fungal laccases, Trametes hirsuta (ThL) and Melanocarpus albomyces (MaL) were used in the cross-linking reactions. Reactivity of ThL and MaL on Lignoboost™ lignin and LNPs was confirmed by high performance size exclusion chromatography (HPSEC) and oxygen consumption measurements with simultaneous detection of red-brown color due to the formation of quinones. Zeta potential measurements verified oxidation of LNPs via formation of surface-oriented carboxylic acid groups. Dynamic light scattering (DLS) revealed minor changes in the particle size distributions of LNPs after laccase catalyzed radicalization, indicating preferably covalent intraparticular cross-linking over polymerization. Changes in the surface morphology of laccase treated LNPs were imaged by atomic force (AFM) and transmission emission (TEM) microscopy. Furthermore, decolorization of LNPs without degradation was obtained using ultrasonication with HO in alkaline reaction conditions. The research results have high impact for the utilization of Kraft lignin as nanosized colloidal particles in advanced bionanomaterial applications in medicine, foods and cosmetics including different sectors from chemical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.