Paracoccus denitrificans is a soil bacterium which can respire aerobically and also denitrify if oxygen is absent. Both processes are highly dependent on copper enzymes and copper is therefore likely to be an essential trace element for the bacterium. If copper is not easily available, a copper-acquisition mechanism would be highly beneficial. In this paper, we have addressed the question of whether Paracoccus secretes a copper-acquisition compound functionally analogous to that found in some methanotrophs. Bacteria were grown both in copper-containing and copper-deficient denitrification media, cells were removed by centrifugation and the supernatant was analysed using chromatography and spectroscopy. Bacterial growth yield in the absence of copper was 70-80% of that in the copper-containing medium. A notable difference between the two culture conditions was that spent copper-deficient medium was pigmented, whereas the copper-containing medium was not. Spectrophotometry indicated that a red compound with an absorption maximum at 405 nm was produced under copper-limited conditions. In addition to the strong 405 nm maximum, the visible spectrum of the purified red molecule had weaker maxima at 535 nm and 570 nm, features typical of metallated tetrapyrroles. Mass spectrometry showed that the purified pigment had a molecular mass of 716.18. Moreover, the fine structure of the mass spectrum suggested the presence of zinc and was consistent with the chemical formula of C(36)H(36)N(4)O(8)Zn. The presence of zinc was also demonstrated using inductively coupled plasma atomic emission spectroscopy. Fragmentation analysis with mass spectrometry showed the release of consecutive 59 Da fragments, assignable to four -CH(2)-COOH moieties. Thin layer chromatography as well as NMR analysis of the C-13/N-15 labelled red pigment suggested that it is predominantly zinc coproporphyrin III with a minor fraction of metal-free coproporphyrin III. We propose that in a copper-poor environment P. denitrificans secretes coproporphyrin III for copper chelation and subsequent uptake of the bound copper into the cell. Consistent with this idea, cell yields of copper-deficient cultures grown in the presence of 1 microM copper-coproporphyrin III were 90-95% of the yields of cultures grown in the normal copper-containing media. Coproporphyrin III may work as a copper-acquisition compound in P. denitrificans.
This work describes a procedure to evaluate matrix effects in a combined dilution and standard addition method (SAM) using liquid chromatography-electrospray-tandem mass spectrometry. The method was validated and applied to an analysis of metformin in postmortem blood samples. The analytical method included protein precipitation with methanol, followed by liquid chromatographic separation of metformin on Gemini NX-C18 reversed-phase column using a gradient consisting of methanol and ammonium acetate at pH 3.2. The mass spectrometric analysis was performed with a quadrupole-linear ion trap mass spectrometer equipped with a turbo ion spray interface in a positive ion mode using selected reaction monitoring. Quantitation was performed based on an SAM. Validation for metformin revealed a practical limit of quantification of 0.1 mg/L, a linear range from 0.1 to 3.0 mg/L, average precision 10%, accuracy (bias) 9% and reproducibility 10%. Combined matrix effects were evaluated by k-values (slopes) of calibration plots, postextraction addition approach and a comparison of within- and between-sample precision (relative standard deviation). It was demonstrated that the method contained matrix effects which were fully compensated for using dilution and the SAM.
Lactate is produced in carbohydrate metabolism under anaerobic conditions. Lactic acidosis occurs when the production of lactate exceeds its removal. In post-mortem (PM) context, the lactic acidosis is difficult to interpret due to unknown pathophysiological factors prior to death and PM changes that may affect the lactate levels. We evaluated 1865 medico-legal autopsy cases where the quantitation of glucose, lactate, and ketone bodies was performed as a part of the cause of death (CoD) investigation. Lactate was shown to ascend in a logarithmic manner as the PM interval increased until a plateau was achieved approximately after 8-10 days PM, and the elevation was caused mainly by PM changes. The lactate level was higher than the mean in cases where the CoD was diabetes mellitus type 2 (DM2) or metformin poisoning. Although there was a correlation between metformin and lactate levels, our findings suggest the DM2 and its complications were the cause for elevated lactate levels rather than metformin, since the lactate levels were similar in DM2-associated deaths where no metformin was detected. Elevated lactate levels in PM samples rather referred to metabolic disturbances often caused by DM2. An assay to detect D-lactate in PM samples was described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.