Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of BoseEinstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.
Using space-, time-and phase-resolved Brillouin light scattering spectroscopy we investigate the difference in phase of the two counterpropagating spin waves excited by the same microwave microstrip transducer. These studies are performed both for backward volume magnetostatic waves and magnetostatic surface waves in an in-plane magnetized yttrium iron garnet film. The experiments show that for the backward volume magnetostatic spin waves (which are reciprocal and excited symmetrically in amplitude) there is a phase difference of π associated with the excitation process and thus the phase symmetry is distorted. On the contrary, for the magnetostatic surface spin waves (which are non-reciprocal and unsymmetrical in amplitude) the phase symmetry is preserved (there is no phase difference between the two waves associated with the excitation). Theoretical analysis confirms this effect.
We demonstrate a current-controlled, dynamic magnonic crystal. It consists of a ferrite film whose internal magnetic field exhibits a periodic, cosine-like variation. The field modulation is created by a direct current flowing through an array of parallel wires placed on top of a spin-wave waveguide. A single, pronounced rejection band in the spin-wave transmission characteristics is formed due to spinwave scattering from the inhomogeneous magnetic field. With increasing current the rejection band depth and its width increase strongly. The magnonic crystal allows a fast control of its operational characteristics via the applied direct current. Simulations confirm the experimental results.
Nanocrystals based on metal-halide perovskites offer a promising material platform for highly efficient lighting. Using transient optical spectroscopy, we study excitation recombination dynamics in manganese-doped CsPb(Cl,Br)3 perovskite nanocrystals. We find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor.Supported by ab initio calculations, we can attribute the enhanced emission rates to increased exciton localization through lattice periodicity breaking from Mn dopants, which increases exciton effective masses and overlap of electron and hole wavefunctions and thus the oscillator strength. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.