Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
Forest ecosystems maintain a large share of Northern Hemisphere biodiversity. Boreal forests comprise roughly 30% of global forest area 1 and contain the highest tree density among climate zones 2 . Moreover, boreal regions are undergoing extensive climate change. Annual temperature increases exceeding 1.5 °C are projected to result in a warming of 4-11 °C by the end of this century, with little concomitant increase in precipitation 1 . At this pace, climate zones will shift northward at a greater speed than trees can migrate 3 . To understand how future populations of forest trees may respond to climate change, it is essential to uncover past and present signatures of molecular adaptation in their genomes. Silver birch, B. pendula, is a pioneer species in boreal forests of Eurasia. Flowering of the species can be artificially accelerated 4 , giving it an advantage over other tree species with published genome sequences (such as poplar 5 , spruce 6 , and pine 7 ) for the optimization of fiber and biomass production.Here we sequenced 150 birch individuals and assembled a B. pendula reference genome from a fourth-generation inbred line, resulting in a high-quality assembly of 435 Mb that was linked to chromosomes using a dense genetic map. We analyzed SNPs in the genomes of 80 birch individuals spanning most of the geographic range of B. pendula, as well as seven other members of Betulaceae. Population genomic analyses of these data provide insights into the deep-time evolution of the birch family and on recent natural selection acting on silver birch.Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightlylinked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.A full list of affiliations appears at the end of the paper.
The genetic model plant Arabidopsis thaliana (arabidopsis) has been instrumental to recent advances in our understanding of the molecular function of the plant immune system. However, this work has not yet included plant associated and phytopathogenic yeasts largely due to a lack of yeast species known to interact with arabidopsis. The plant phylloplane is a significant habitat for neutral-residents, plant-growth and health-promoting species, and latent-pathogenic species. However, yeast phylloplane residents of arabidopsis remain underexplored. To address this, resident yeasts from the phyllosphere of wild arabidopsis collected in field conditions have been isolated and characterized. A total of 95 yeast strains representing 23 species in 9 genera were discovered, including potentially psychrophilic and pathogenic strains. Physiological characterization revealed thermotolerance profiles, sensitivity to the arabidopsis phytoalexin camalexin, the production of indolic compounds, and the ability to activate auxin responses in planta. These results indicate a rich diversity of yeasts present in the arabidopsis phylloplane and have created culture resources and information useful in the development of model systems for arabidopsis-yeast interactions.
We describe the genome contents of six Protomyces spp. that are pathogenic within the typical host range of the genus and a novel Protomyces strain (SC29) that was previously isolated from the phylloplane of wild Arabidopsis thaliana (Arabidopsis), an atypical or possible alternate host. Genome-wide phylogenetic analysis defined SC29 as a distinct Protomyces sp. Analysis of gene family expansions, gene retention, and gene loss patterns among these Protomyces spp. lead us to hypothesize that SC29 may have undergone a host jump. The role of phyllosphere residency in the lifecycle of Protomyces spp. was previously unknown. Genomic changes in SC29 and all other Protomyces spp. were consistent with adaptations to the plant phylloplane. As predicted by our analysis of its mating locus, SC29 did not cause disease on Arabidopsis as a single strain, but could persist in its phylloplane, while the closely related P. inouyei does not. SC29 treated Arabidopsis exhibited enhanced immunity against Botrytis cinerea infection, associated with activation of MAPK3/6, camalexin, and SA-signalling pathways. We conclude that SC29 is a novel Protomyces sp. able to survive in the Arabidopsis phylloplane and that phylloplane residency is an important element in the lifecycle of Protomyces spp.
Genes encoding key enzymes of catabolic pathways can be targeted by DNA fingerprinting to explore genetic degradation potential in pristine and polluted soils. We performed a greenhouse microcosm experiment to elucidate structural and functional bacterial diversity in polyaromatic hydrocarbon (PAH)-polluted soil and to test the suitability of birch (Betula pendula) for remediation. Degradation of PAHs was analysed by high-performance liquid chromatography, DNA isolated from soil amplified and fingerprinted by restriction fragment length polymorphism (RFLP) and terminal restriction fragment length polymorphism (T-RFLP). Bacterial 16S rRNA T-RFLP fingerprinting revealed a high structural bacterial diversity in soil where PAH amendment altered the general community structure as well as the rhizosphere community. Birch augmented extradiol dioxygenase diversity in rhizosphere showing a rhizosphere effect, and further pyrene was more efficiently degraded in planted pots. Degraders of aromatic compounds upon PAH amendment were shown by the changed extradiol ring-cleavage community structure in soil. The RFLP analysis grouped extradiol dioxygenase marker genes into 17 distinct operational taxonomic units displaying novel phylogenetic clusters of ring-cleavage dioxygenases representing putative catabolic pathways, and the peptide sequences contained conserved amino-acid signatures of extradiol dioxygenases. A branch of major environmental TS cluster was identified as being related to Parvibaculum lavantivorans ring-cleavage dioxygenase. The described structural and functional diversity demonstrated a complex interplay of bacteria in PAH pollution. The findings improve our understanding of rhizoremediation and unveil the extent of uncharacterized enzymes and may benefit bioremediation research by facilitating the development of molecular tools to detect and monitor populations involved in degradative processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.